dynasm\arch\riscv/
compiler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
use super::Context;
use super::riscvdata::{Template, Command, Relocation, ROUNDMODE_MAP, FENCESPEC_MAP, CSR_MAP, FP_IMM_IDENT_MAP, FP_IMM_VALUE_MAP};
use super::ast::{MatchData, FlatArg, RegListFlat, Register};

use syn::spanned::Spanned;
use quote::{quote, quote_spanned};
use proc_macro2::{TokenStream, Span, Literal};
use proc_macro_error2::emit_error;

use crate::parse_helpers::{as_signed_number, as_ident, as_float};
use crate::common::{Stmt, Size, delimited, bitmask, bitmask64};

/// Compile a single instruction. Input is taken from `data`, containing both the arguments
/// and the encoding template and commands.
/// Output is written to ctx.state
/// Errors can be emitted to either the whole instruction span (by returning Err(Some(errormsg)))
/// or emited specifically using emit_error! and returning Err(None)
pub(super) fn compile_instruction(ctx: &mut Context, data: MatchData) -> Result<(), Option<String>> {
    // argument cursor
    let mut cursor = 0usize;

    // All static bitfields (compile-time constant) will be encoded into this map of (offset, bitfield)
    let mut statics = Vec::new();
    // All dynamic bitfields (run-time determined) will be encoded into this map of (offset, TokenStream)
    let mut dynamics = Vec::new();
    // Any relocation will be encoded in this list
    let mut relocations = Vec::new();

    for (i, command) in data.data.commands.iter().enumerate() {
        // meta commands
        match *command {

            Command::Repeat => {
                cursor -= 1;
                continue;
            },
            Command::Next => {
                cursor += 1;
                continue;
            },
            _ => ()
        }

        let arg = data.args.get(cursor).expect("Invalid encoding data, tried to process more arguments than given");

        match *arg {
            FlatArg::Register { span, reg: Register::Static(id) } => {
                let mut code = id.code();

                let offset = match *command {
                    Command::R(offset) => offset,
                    Command::Reven(offset) => {
                        if code & 0x1 != 0 {
                            emit_error!(span, "This register must be even numbered");
                            return Err(None);
                        }
                        offset
                    },
                    Command::Rno0(offset) => {
                        if code == 0 {
                            emit_error!(span, "This register must not be x0");
                            return Err(None);
                        }
                        offset
                    },
                    Command::Rno02(offset) => {
                        if code == 0 || code == 2 {
                            emit_error!(span, "This register must not be x0 or x2");
                            return Err(None);
                        }
                        offset
                    },
                    Command::Rpop(offset) => {
                        if code < 8 || code > 15 {
                            emit_error!(span, "This register must be one of x8-x15");
                            return Err(None);
                        }
                        code &= 7;
                        offset
                    },
                    Command::Rpops(offset) => {
                        if ((1 << code) & 0x00_FC_03_00) == 0 {
                            emit_error!(span, "This register must be one of s0-s7 (x8, x9, x18-x23");
                            return Err(None);
                        }
                        code &= 7;
                        offset
                    },
                    Command::Rpops2(offset) => {
                        match data.args.get(cursor - 1) {
                            Some(FlatArg::Register { reg: Register::Static(id2), .. } ) => {
                                if *id2 == id {
                                    emit_error!(span, "This register cannot be identical to the previous argument");
                                    return Err(None);
                                }
                            },
                            Some(FlatArg::Register { reg: Register::Dynamic(_, ref expr), .. }) => {
                                dynamics.push((0, quote_spanned!{ span=>
                                    {
                                        let _dyn_reg: u8 = #expr;
                                        if _dyn_reg == #code {
                                            ::dynasmrt::riscv::invalid_register(#code);
                                        }
                                        0u32
                                    }
                                }));
                            },
                            _ => panic!("Invalid encoding data, expected a register before")
                        }

                        if ((1 << code) & 0x00_FC_03_00) == 0 {
                            emit_error!(span, "This register must be one of s0-s7 (x8, x9, x18-x23");
                            return Err(None);
                        }
                        code &= 7;
                        offset
                    },
                    _ => panic!("Invalid argument processor")
                };

                statics.push((offset, u32::from(code)));
            },

            FlatArg::Register { span, reg: Register::Dynamic(_, ref expr) } => match *command {
                Command::R(offset) => {
                    dynamics.push((offset, quote_spanned!{ span=>
                        ((#expr & 0x1F) as u32)
                    }));
                },
                Command::Reven(offset) => {
                    let invalid_reg_mask: u8 = if ctx.target.is_embedded() { 0xF0 } else { 0xE0 };
                    dynamics.push((offset, quote_spanned!{ span=>
                        {
                            let _dyn_reg: u8 = #expr;
                            if _dyn_reg & 0x1 != 0x0 || (_dyn_reg & #invalid_reg_mask) != 0 {
                                ::dynasmrt::riscv::invalid_register(_dyn_reg);
                            }
                            (_dyn_reg & 0x1E) as u32
                        }
                    }));
                },
                Command::Rno0(offset) => {
                    let invalid_reg_mask: u8 = if ctx.target.is_embedded() { 0xF0 } else { 0xE0 };
                    dynamics.push((offset, quote_spanned!{ span=>
                        {
                            let _dyn_reg: u8 = #expr;
                            if _dyn_reg == 0x0 || (_dyn_reg & #invalid_reg_mask) != 0 {
                                ::dynasmrt::riscv::invalid_register(_dyn_reg);
                            }
                            (_dyn_reg & 0x1F) as u32
                        }
                    }));
                },
                Command::Rno02(offset) => {
                    let invalid_reg_mask: u8 = if ctx.target.is_embedded() { 0xF0 } else { 0xE0 };
                    dynamics.push((offset, quote_spanned!{ span=>
                        {
                            let _dyn_reg: u8 = #expr;
                            if _dyn_reg == 0x0 || _dyn_reg == 0x2 || (_dyn_reg & #invalid_reg_mask) != 0 {
                                ::dynasmrt::riscv::invalid_register(_dyn_reg);
                            }
                            (_dyn_reg & 0x1F) as u32
                        }
                    }));
                },
                Command::Rpop(offset) => {
                    let invalid_reg_mask: u8 = if ctx.target.is_embedded() { 0xF0 } else { 0xE0 };
                    dynamics.push((offset, quote_spanned!{ span=>
                        {
                            let _dyn_reg: u8 = #expr;
                            if _dyn_reg & 0x18 != 0x8 || (_dyn_reg & #invalid_reg_mask) != 0 {
                                ::dynasmrt::riscv::invalid_register(_dyn_reg);
                            }
                            (_dyn_reg & 0x7) as u32
                        }
                    }));
                },
                Command::Rpops(offset) => {
                    let invalid_reg_mask: u8 = if ctx.target.is_embedded() { 0xF0 } else { 0xE0 };
                    dynamics.push((offset, quote_spanned!{ span=>
                        {
                            let _dyn_reg: u8 = #expr;
                            if (1u32 << (_dyn_reg & 0x1F)) & 0x00_FC_03_00 == 0 || (_dyn_reg & #invalid_reg_mask) != 0 {
                                ::dynasmrt::riscv::invalid_register(_dyn_reg);
                            }
                            (_dyn_reg & 0x7) as u32
                        }
                    }));
                },
                Command::Rpops2(offset) => match data.args.get(cursor - 1) {
                    Some(FlatArg::Register { reg: Register::Static(id2), .. } ) => {
                        let code: u8 = id2.code();
                        let invalid_reg_mask: u8 = if ctx.target.is_embedded() { 0xF0 } else { 0xE0 };
                        dynamics.push((offset, quote_spanned!{ span=>
                            {
                                let _dyn_reg: u8 = #expr;
                                if (_dyn_reg == #code) || ((1u32 << (_dyn_reg & 0x1F)) & 0x00_FC_03_00 == 0) || (_dyn_reg & #invalid_reg_mask) != 0 {
                                    ::dynasmrt::riscv::invalid_register(_dyn_reg);
                                }
                                (_dyn_reg & 0x7) as u32
                            }
                        }));
                    },
                    Some(FlatArg::Register { reg: Register::Dynamic(_, ref expr2), .. }) => {
                        let invalid_reg_mask: u8 = if ctx.target.is_embedded() { 0xF0 } else { 0xE0 };
                        dynamics.push((offset, quote_spanned!{ span=>
                            {
                                let _dyn_reg: u8 = #expr;
                                let _dyn_reg_prev: u8 = #expr2;
                                if (_dyn_reg == _dyn_reg_prev) || ((1u32 << (_dyn_reg & 0x1F)) & 0x00_FC_03_00 == 0) || (_dyn_reg & #invalid_reg_mask) != 0 {
                                    ::dynasmrt::riscv::invalid_register(_dyn_reg);
                                }
                                (_dyn_reg & 0x7) as u32
                            }
                        }));
                    },
                    _ => panic!("Invalid encoding data, expected a register before")
                },
                _ => panic!("Invalid argument processor")
            },

            FlatArg::RegisterList { span, ref count } => match *command {
                Command::Rlist(offset) => match count {
                    RegListFlat::Static(c) => {
                        statics.push((offset, u32::from(*c)));
                    },
                    RegListFlat::Dynamic(expr) => {
                        if let Some(static_value) = as_signed_number(expr) {
                            if static_value < 0 || (static_value > 10 && static_value != 12) {
                                emit_error!(expr, "Impossible register list");
                                return Err(None);
                            }

                            let c = if static_value == 12 {
                                15
                            } else {
                                (static_value + 4) as u32
                            };

                            statics.push((offset, c));

                        } else {
                            // okay, so we're given an expression here, with legal input values
                            // being 0-10 and 12, which should be mapped to 4-14 and 15
                            // note: this isn't quite the right register error
                            dynamics.push((offset, quote_spanned!{ span=>
                                {
                                    let _dyn_reg: u32 = #expr;
                                    if _dyn_reg == 11 || _dyn_reg > 12 {
                                        ::dynasmrt::riscv::invalid_register(_dyn_reg as u8);
                                    }
                                    (_dyn_reg + if (_dyn_reg == 12) { 3 } else { 4 }) & 0xF
                                }
                            }));
                        }
                    }
                },
                _ => panic!("Invalid argument processor")
            },

            FlatArg::Default => match *command {
                // Default is only emitted for a RefOffset where no offset was provided, i.e. it is 0
                // This practically means we just don't have to encode anything.
                Command::UImm(_, _)
                | Command::SImm(_, _)
                | Command::BitRange(_, _, _) 
                | Command::Next => (),
                _ => panic!("Invalid argument processor")
            },

            FlatArg::Immediate { ref value } => match *command {
                // integer verification commands
                Command::UImm(bits, scaling) => {
                    let span = value.span();
                    let range: u32 = bitmask(bits);

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(data.data.commands, i + 1, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            static_range_check(static_value, 0, range, scaling, span)?;
                        },
                        None => {
                            let check = if scaling == 0 {
                                quote_spanned!{ span =>
                                    _dyn_imm > #range
                                }
                            } else {
                                let zeromask: u32 = bitmask(scaling);
                                quote_spanned!{ span =>
                                    _dyn_imm > #range || _dyn_imm & #zeromask != 0u32
                                }
                            };
                            imm_encoder.emit_dynamic(false, false, check, &mut dynamics);
                        }
                    }
                },
                Command::SImm(bits, scaling) => {
                    let span = value.span();
                    let range = bitmask(bits);
                    let min: i32 = (-1) << (bits - 1);

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(data.data.commands, i + 1, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            static_range_check(static_value, min, range, scaling, span)?;
                        },
                        None => {
                            let check = if scaling == 0 {
                                quote_spanned!{ span =>
                                    _dyn_imm.wrapping_sub(#min) as u32 > #range
                                }
                            } else {
                                let zeromask = bitmask(scaling) as i32;
                                quote_spanned!{ span =>
                                    _dyn_imm.wrapping_sub(#min) as u32 > #range || _dyn_imm & #zeromask != 0i32
                                }
                            };
                            imm_encoder.emit_dynamic(true, false, check, &mut dynamics);
                        }
                    }
                },
                Command::BigImm(bits) => {
                    let span = value.span();
                    let range = bitmask64(bits);
                    let min: i64 = (-1) << (bits - 1);

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(data.data.commands, i + 1, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            if static_value < min {
                                emit_error!(span, "Immediate too low");
                                return Err(None);
                            }
                            if static_value.wrapping_sub(min) as u64 > range {
                                emit_error!(span, "Immediate too high");
                                return Err(None);
                            }
                        },
                        None => {
                            let check = quote_spanned!{ span =>
                                _dyn_imm.wrapping_sub(#min) as u64 > #range
                            };
                            imm_encoder.emit_dynamic(true, true, check, &mut dynamics);
                        }
                    }
                },
                Command::UImmNo0(bits, scaling) => {
                    let span = value.span();
                    let range = bitmask(bits);

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(data.data.commands, i + 1, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            static_range_check(static_value, 0, range, scaling, span)?;
                            if static_value == 0 {
                                emit_error!(span, "Immediate cannot be zero");
                                return Err(None);
                            }
                        },
                        None => {
                            let check = if scaling == 0 {
                                quote_spanned!{ span =>
                                    _dyn_imm > #range || _dyn_imm == 0u32
                                }
                            } else {
                                let zeromask: u32 = bitmask(scaling);
                                quote_spanned!{ span =>
                                    _dyn_imm > #range || _dyn_imm & #zeromask != 0u32 || _dyn_imm == 0u32
                                }
                            };
                            imm_encoder.emit_dynamic(false, false, check, &mut dynamics);
                        },
                    }
                },
                Command::SImmNo0(bits, scaling) => {
                    let span = value.span();
                    let range = bitmask(bits);
                    let min: i32 = (-1) << (bits - 1);

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(data.data.commands, i + 1, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            static_range_check(static_value, min, range, scaling, span)?;
                            if static_value == 0 {
                                emit_error!(span, "Immediate cannot be zero");
                                return Err(None);
                            }
                        },
                        None => {
                            let check = if scaling == 0 {
                                quote_spanned!{ span =>
                                    _dyn_imm.wrapping_sub(#min) as u32 > #range || _dyn_imm == 0i32
                                }
                            } else {
                                let zeromask = bitmask(scaling) as i32;
                                quote_spanned!{ span =>
                                    _dyn_imm.wrapping_sub(#min) as u32 > #range || _dyn_imm & #zeromask != 0i32 || _dyn_imm == 0i32
                                }
                            };
                            imm_encoder.emit_dynamic(true, false, check, &mut dynamics);
                        }
                    }
                },
                Command::UImmOdd(bits, scaling) => {
                    let span = value.span();
                    let range = bitmask(bits);
                    let zeromask: u32 = bitmask(scaling);

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(data.data.commands, i + 1, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            let biased = static_range_check(static_value, 0, range, 0, span)?;
                            if biased & zeromask != zeromask {
                                emit_error!(span, "Unrepresentable immediate");
                                return Err(None);
                            }
                        },
                        None => {
                            let check = if scaling == 0 {
                                quote_spanned!{ span =>
                                    _dyn_imm > #range
                                }
                            } else {
                                quote_spanned!{ span =>
                                    _dyn_imm > #range || _dyn_imm & #zeromask != #zeromask
                                }
                            };
                            imm_encoder.emit_dynamic(false, false, check, &mut dynamics);
                        }
                    }
                },
                Command::UImmRange(min, max) => {
                    let span = value.span();
                    let min = u32::from(min);
                    let max = u32::from(max);

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(data.data.commands, i + 1, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            if static_value < i64::from(min) {
                                emit_error!(span, "Immediate too low");
                                return Err(None);
                            }
                            if static_value > i64::from(max) {
                                emit_error!(span, "Immediate too high");
                                return Err(None);
                            }
                        },
                        None => {
                            let check = quote_spanned!{ span=>
                                _dyn_imm < #min || _dyn_imm > #max
                            };
                            imm_encoder.emit_dynamic(false, false, check, &mut dynamics);
                        }
                    }
                },

                // integer encoding commands
                Command::BitRange(offset, bits, scaling) => (),
                Command::RBitRange(offset, bits, scaling) => (),

                // offsets can accept immediates too
                Command::Offset(relocation_type) => {
                    let bits;
                    let scaling;
                    let commands: &'static [Command];

                    // equivalent bitrange encodings for offsets
                    match relocation_type {
                        // 12 bits, 2-bit scaled. Equivalent to
                        Relocation::B => {
                            bits = 12;
                            scaling = 1;
                            commands = &[
                                Command::BitRange(31, 1, 12),
                                Command::BitRange(25, 6, 5),
                                Command::BitRange(8, 4, 1),
                                Command::BitRange(7, 1, 11),
                                Command::Next
                            ];
                        },
                        // 20 bits, 2-bit scaled
                        Relocation::J => {
                            bits = 20;
                            scaling = 1;
                            commands = &[
                                Command::BitRange(31, 1, 20),
                                Command::BitRange(21, 10, 1),
                                Command::BitRange(20, 1, 11),
                                Command::BitRange(12, 8, 12),
                                Command::Next
                            ];
                        },
                        // 9 bits, 2-bit scaled
                        Relocation::BC => {
                            bits = 9;
                            scaling = 1;
                            commands = &[
                                Command::BitRange(12, 1, 8),
                                Command::BitRange(10, 2, 3),
                                Command::BitRange(5, 2, 6),
                                Command::BitRange(3, 2, 1),
                                Command::BitRange(2, 1, 5),
                                Command::Next
                            ];
                        },
                        // 12 bits, 2-bit scaled
                        Relocation::JC => {
                            bits = 12;
                            scaling = 1;
                            commands = &[
                                Command::BitRange(12, 1, 11),
                                Command::BitRange(11, 1, 4),
                                Command::BitRange(9, 2, 8),
                                Command::BitRange(8, 1, 10),
                                Command::BitRange(7, 1, 6),
                                Command::BitRange(6, 1, 7),
                                Command::BitRange(3, 3, 1),
                                Command::BitRange(2, 1, 5),
                                Command::Next
                            ]; // why
                        },
                        // 32 bits, 12-bit scaled, offset by 0x800
                        Relocation::HI20 => {
                            bits = 32;
                            scaling = 0;
                            commands = &[
                                Command::RBitRange(12, 20, 12),
                                Command::Next
                            ];
                        },
                        // 12 bits, no scaling
                        Relocation::LO12 => {
                            bits = 12;
                            scaling = 0;
                            commands = &[
                                Command::BitRange(20, 12, 0),
                                Command::Next
                            ];
                        },
                        // 12 bits, no scaling
                        Relocation::LO12S => {
                            bits = 12;
                            scaling = 0;
                            commands = &[
                                Command::BitRange(7, 5, 0),
                                Command::BitRange(25, 7, 5),
                                Command::Next
                            ];
                        },
                        // 32 bits, no scaling, offset by 0x800
                        Relocation::SPLIT32 => {
                            bits = 32;
                            scaling = 0;
                            commands = &[
                                Command::RBitRange(12, 20, 12),
                                Command::BitRange(20+32, 12, 0),
                                Command::Next
                            ];
                        },
                        // 32 bits, no scaling, offset by 0x800
                        Relocation::SPLIT32S => {
                            bits = 32;
                            scaling = 0;
                            commands = &[
                                Command::RBitRange(12, 20, 12),
                                Command::BitRange(7+32, 5, 0),
                                Command::BitRange(25+32, 7, 5),
                                Command::Next
                            ];
                        },
                        Relocation::LITERAL8
                        | Relocation::LITERAL16
                        | Relocation::LITERAL32
                        | Relocation::LITERAL64 => panic!("Literal relocation in instruction"),
                    }

                    let span = value.span();
                    let mut range = bitmask(bits);
                    let min: i32 = (-1) << (bits - 1);

                    // special case: the 32-bit AUIPC-based offsets don't actually
                    // range from -0x8000_0000 to 0x7FFF_FFFF on RV64 due to how
                    // sign extension interacts between them, they range from
                    // -0x8000_0800 to 0x7FFF_F7FF. But on RV32 they do span
                    // from -0x8000_0000 to 0x7FFF_FFFF.
                    // neither of these limits will ever occur in practical code,
                    // so for sanity's sake we just clamp to between -0x8000_0000 and
                    // 0x7FFF_F7FF
                    if bits == 32 {
                        range = 0xFFFF_F7FF;
                    }

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(commands, 0, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            static_range_check(static_value, min, range, scaling, span)?;
                        },
                        None => {
                            let check = if scaling == 0 {
                                quote_spanned!{ span =>
                                    _dyn_imm.wrapping_sub(#min) as u32 > #range
                                }
                            } else {
                                let zeromask = bitmask(scaling) as i32;
                                quote_spanned!{ span =>
                                    _dyn_imm.wrapping_sub(#min) as u32 > #range || _dyn_imm & #zeromask != 0i32
                                }
                            };

                            imm_encoder.emit_dynamic(true, false, check, &mut dynamics);
                        }
                    }
                },

                // Non-integer immediate commands
                Command::RoundingMode(offset) => {
                    let name = as_ident(value).expect("bad command data").to_string();
                    if let Some(&bits) = ROUNDMODE_MAP.get(&&*name) {
                        statics.push((offset, u32::from(bits)));
                    } else {
                        emit_error!(value, "Unknown literal");
                        return Err(None);
                    }
                },
                Command::FenceSpec(offset) => {
                    let name = as_ident(value).expect("bad command data").to_string();
                    if let Some(&bits) = FENCESPEC_MAP.get(&&*name) {
                        statics.push((offset, u32::from(bits)));
                    } else {
                        emit_error!(value, "Unknown literal");
                        return Err(None);
                    }
                },
                Command::Csr(offset) => 'csr: {
                    // Csr is a bit special as it allows both immediates and names
                    // because we cannot differentiate from those earlier, we handle that here.
                    if let Some(name) = as_ident(value) {
                        let name = name.to_string();
                        if let Some(&bits) = CSR_MAP.get(&&*name) {
                            statics.push((offset, u32::from(bits)));
                            break 'csr;
                        }
                    }

                    let span = value.span();
                    let range = 0xFFF;
                    let commands = &[
                        Command::BitRange(offset, 12, 0),
                        Command::Next
                    ];

                    let mut imm_encoder = ImmediateEncoder::new(value);
                    imm_encoder.gather_fields(commands, 0, &mut statics);

                    match imm_encoder.static_value {
                        Some(static_value) => {
                            static_range_check(static_value, 0, range, 0, span)?;
                        },
                        None => {
                            let check = quote_spanned!{ span =>
                                _dyn_imm > #range
                            };
                            imm_encoder.emit_dynamic(false, false, check, &mut dynamics);
                        }
                    }
                },
                Command::FloatingPointImmediate(offset) => 'fpimm: {
                    // this one has several special cases, and is very hard to do at runtime
                    // firstly, min, inf and nan are not actually values, but idents
                    // (min depends on what kind of floating point register the instruction targets)
                    // next to that, we need to parse 29 floating point values
                    if let Some(name) = as_ident(value) {
                        let name = name.to_string();
                        if let Some(&bits) = FP_IMM_IDENT_MAP.get(&&*name) {
                            statics.push((offset, u32::from(bits)));
                            break 'fpimm;
                        }
                    }

                    if let Some(value) = as_float(value) {
                        let value = value as f32;

                        if let Some(&(_, bits)) = FP_IMM_VALUE_MAP.iter().find(|(val, bits)| val == &value) {
                            statics.push((offset, u32::from(bits)));
                            break 'fpimm;
                        }
                    }

                    emit_error!(value, "Invalid floating point immediate.");
                    return Err(None);
                },
                Command::SPImm(offset, negated) => 'spimm: {
                    // the value we need to encode here depends on the count of registers in the
                    // register list, and depends on the target architecture as well.
                    let count = match data.args.get(cursor - 1) {
                        Some(FlatArg::RegisterList { count, .. }) => count,
                        _ => panic!("Invalid encoding data, expected a register list before")
                    };

                    let span = value.span();

                    // either statically encode it, or return an expression for the register list bias
                    let bias_expr = match count {
                        RegListFlat::Static(code) => {
                            let code = if *code == 15 {16} else {*code};

                            let bias = if ctx.target.is_32_bit() {
                                i32::from(code / 4 * 16)
                            } else {
                                i32::from(code / 2 * 16 - 16)
                            };

                            if let Some(mut static_value) = as_signed_number(value) {
                                // statically encode everything
                                if negated {
                                    static_value = static_value.saturating_neg();
                                }

                                let bits = static_range_check(static_value, bias, 48, 4, span)? >> 4;
                                statics.push((offset, bits));

                                break 'spimm;

                            } else {
                                quote_spanned!{ span=>
                                    let _reglist_bias: i32 = #bias;
                                }
                            }
                        },
                        RegListFlat::Dynamic(expr) => {
                            if let Some(mut static_value) = as_signed_number(value) {
                                // just some sanity checks at compile time
                                if negated {
                                    static_value = static_value.saturating_neg();
                                }
                                if ctx.target.is_32_bit() {
                                    static_range_check(static_value, 16, 96, 4, span)?;
                                } else {
                                    static_range_check(static_value, 16, 144, 4, span)?;
                                }
                            }
                            if ctx.target.is_32_bit() {
                                quote_spanned!{ span=>
                                    let _reglist_expr: u8 = #expr;
                                    let _reglist_bias: i32 = (_reglist_expr as i32) / 4 * 16 + 16;
                                }
                            } else {
                                quote_spanned!{ span=>
                                    let _reglist_expr: u8 = #expr;
                                    let _reglist_bias: i32 = (_reglist_expr as i32) / 2 * 16 + 16;
                                }
                            }
                        }
                    };

                    let imm_expr = if negated {
                        quote_spanned!{ span=>
                            let _dyn_imm: i32 = -#value;
                        }
                    } else {
                        quote_spanned!{ span=>
                            let _dyn_imm: i32 = #value;
                        }
                    };

                    dynamics.push((offset, quote_spanned!{ span=>
                        {
                            #imm_expr
                            #bias_expr
                            if (_dyn_imm < _reglist_bias) || ((_dyn_imm - _reglist_bias) > 48) || ((_dyn_imm & 15) != 0) {
                                ::dynasmrt::riscv::immediate_out_of_range_signed_32(_dyn_imm);
                            }
                            (_dyn_imm - _reglist_bias) as u32 >> 4
                        }
                    }));
                },
                _ => panic!("Invalid argument processor")
            },

            FlatArg::JumpTarget { ref jump } => match *command {
                Command::Offset( relocation ) => {
                    // encode the complete relocation. Always starts at the begin of the instruction(s), and also relative to that
                    let stmt = jump.clone().encode(relocation.size(), relocation.size(), &[relocation.to_id()]);

                    relocations.push(stmt);
                },
                _ => panic!("Invalid argument processor")
            }
        }

        // figure out how far the cursor has to be advanced.
        match *command {
            Command::UImm(_, _)
            | Command::SImm(_, _)
            | Command::BigImm(_)
            | Command::UImmNo0(_, _)
            | Command::SImmNo0(_, _)
            | Command::UImmOdd(_, _)
            | Command::UImmRange(_, _)
            | Command::BitRange(_, _, _)
            | Command::RBitRange(_, _, _) => (),
            _ => cursor += 1
        }
    }

    // sanity
    if cursor != data.args.len() {
        panic!("Not enough command processors");
    }

    let mut templates = [0u32; 8];
    let mut exprs = [None, None, None, None, None, None, None, None];

    // for convenience sake we operate in 32 bits width, even for compressed instructions
    match data.data.template {
        Template::Compressed(val) => templates[0] = u32::from(val),
        Template::Single(val) => templates[0] = val,
        Template::Double(val1, val2) => {
            templates[0] = val1;
            templates[1] = val2;
        },
        Template::Many(values) => {
            templates[ .. values.len()].copy_from_slice(values);
        }
    };

    // apply all statics to templates
    for (offset, value) in statics {
        templates[(offset >> 5) as usize] |= value << (offset & 0x1F);
    }

    // and process all dynamics
    for (offset, expr) in dynamics {
        let index = usize::from(offset >> 5);
        let offset = offset & 0x1F;

        exprs[index] = match exprs[index].take() {
            Some(prev_expr) => {
                Some(if offset == 0 {
                    quote!{ #prev_expr | #expr }
                } else {
                    quote!{ #prev_expr | (#expr << #offset) }
                })
            },
            None => {
                let bits = templates[index];
                Some(if offset == 0 {
                    quote!{ #bits | #expr }
                } else {
                    quote!{ #bits | (#expr << #offset) }
                })
            }
        }
    }

    match data.data.template {
        Template::Compressed(_) => if let Some(d) = exprs[0].take() {
            let res = quote!{ (#d) as u16 };
            ctx.state.stmts.push(Stmt::ExprUnsigned(delimited(res), Size::B_2));
        } else {
            ctx.state.stmts.push(Stmt::Const(u64::from(templates[0] & 0xFFFF), Size::B_2));
        },
        Template::Single(_) => if let Some(d) = exprs[0].take() {
            ctx.state.stmts.push(Stmt::ExprUnsigned(delimited(d), Size::B_4));
        } else {
            ctx.state.stmts.push(Stmt::Const(u64::from(templates[0]), Size::B_4));
        },
        Template::Double(_, _) => {
            for i in 0 .. 2 {
                if let Some(d) = exprs[i].take() {
                    ctx.state.stmts.push(Stmt::ExprUnsigned(delimited(d), Size::B_4));
                } else {
                    ctx.state.stmts.push(Stmt::Const(u64::from(templates[i]), Size::B_4));
                }
            }
        },
        Template::Many(c) => {
            for i in 0 .. c.len() {
                if let Some(d) = exprs[i].take() {
                    ctx.state.stmts.push(Stmt::ExprUnsigned(delimited(d), Size::B_4));
                } else {
                    ctx.state.stmts.push(Stmt::Const(u64::from(templates[i]), Size::B_4));
                }
            }
        }
    }

    ctx.state.stmts.extend(relocations);

    Ok(())
}


/// Handles the encoding of immediates in a somewhat efficient fashion.
struct ImmediateEncoder<'a> {
    pub dynamic_value: &'a syn::Expr,
    pub static_value: Option<i64>,
    pub encodes: Vec<(u8, TokenStream)>, // encoding_offset, expression
    pub span: Span
}

impl<'a> ImmediateEncoder<'a> {
    pub fn new(dynamic_value: &syn::Expr) -> ImmediateEncoder {
        #![allow(unexpected_cfgs)]
        let static_value;

        // this allows turning off static checks for testing purposes
        #[cfg(not(disable_static_checks="1"))]
        {
            static_value = as_signed_number(dynamic_value);
        }
        #[cfg(disable_static_checks="1")]
        {
            static_value = None;
        }

        let span = dynamic_value.span();

        ImmediateEncoder {
            dynamic_value,
            static_value,
            encodes: Vec::new(),
            span
        }
    }

    pub fn gather_fields(&mut self, commands: &[Command], mut index: usize, statics: &mut Vec<(u8, u32)>) {
        loop {
            match commands.get(index) {
                Some(&Command::BitRange(offset, bits, scaling)) => {
                    let mask = bitmask(bits);

                    if let Some(v) = self.static_value {
                        let slice = (v >> scaling) as u32 & mask;
                        statics.push((offset, slice));

                    } else {
                        self.encodes.push((offset, quote_spanned!{ self.span=>
                            ((_dyn_imm >> #scaling) as u32 & #mask)
                        }));
                    }
                },
                Some(&Command::RBitRange(offset, bits, scaling)) => {
                    let mask = bitmask(bits);
                    let round_offset: i64 =  1 << (scaling - 1);

                    if let Some(v) = self.static_value {
                        let slice = (v.wrapping_add(round_offset) >> scaling) as u32 & mask;
                        statics.push((offset, slice));

                    } else {
                        // ensure we emit an unsuffixed literal for this so it works with all
                        // types of number
                        let round_offset = Literal::i64_unsuffixed(round_offset);
                        self.encodes.push((offset, quote_spanned!{ self.span=>
                            ((_dyn_imm.wrapping_add(#round_offset) >> #scaling) as u32 & #mask)
                        }));
                    }
                },
                Some(Command::Next) => break,
                Some(_)
                | None => panic!("Bad encoding data, integer field sequence is not terminated"),
            }
            index += 1;
        }
    }

    pub fn emit_dynamic(mut self, is_signed: bool, is_64bit: bool, check: TokenStream, dynamics: &mut Vec<(u8, TokenStream)>) {
        // assemble encoding chunks
        let mut exprs = [None, None, None, None, None, None, None, None];
        let dynamic_value = self.dynamic_value;
        let span = self.span;

        for (offset, expr) in self.encodes.drain(..) {
            let index = usize::from(offset >> 5);
            let offset = offset & 0x1F;

            exprs[index] = match exprs[index].take() {
                Some(prev_expr) => {
                    let parenthesized = delimited(prev_expr);

                    Some(if offset == 0 {
                        let expr = delimited(expr);
                        quote!{ #parenthesized | #expr }
                    } else {
                        quote!{ #parenthesized | (#expr << #offset) }
                    })
                },
                None => {
                    Some(if offset == 0 {
                        quote!{ #expr }
                    } else {
                        quote!{ #expr << #offset }
                    })
                }
            }
        }

        let imm_ty = match (is_64bit, is_signed) {
            (false, false) => quote_spanned!{ span=> u32 },
            (false, true)  => quote_spanned!{ span=> i32 },
            (true, false)  => quote_spanned!{ span=> u64 },
            (true, true)   => quote_spanned!{ span=> i64 }
        };

        let mut first = true;
        for (i, expr) in exprs.into_iter().enumerate() {
            let encodes = if let Some(encodes) = expr { encodes } else {
                continue
            };
            let offset = (i * 32) as u8;

            if first {
                first = false;
                let error_expr = match (is_64bit, is_signed) {
                    (false, false) => quote_spanned!{ span=>
                        ::dynasmrt::riscv::immediate_out_of_range_unsigned_32
                    },
                    (false, true)  => quote_spanned!{ span=>
                        ::dynasmrt::riscv::immediate_out_of_range_signed_32
                    },
                    (true, false)  => quote_spanned!{ span=>
                        ::dynasmrt::riscv::immediate_out_of_range_unsigned_64
                    },
                    (true, true)   => quote_spanned!{ span=>
                        ::dynasmrt::riscv::immediate_out_of_range_signed_64
                    }
                };

                dynamics.push((offset, quote_spanned!{ span=>
                    {
                        let _dyn_imm: #imm_ty = #dynamic_value;

                        if #check {
                            #error_expr(_dyn_imm);
                        }

                        #encodes
                    }
                }));

            } else {
                dynamics.push((offset, quote_spanned!{ span=>
                    {
                        let _dyn_imm: #imm_ty = #dynamic_value;
                        #encodes
                    }
                }));
            }
        }
    }
}

/// Checks the following things
/// value >= min
/// (value - min) <= range
/// ((value - min) & bitmask(scale)) == 0
/// returning (value - min) on success.
fn static_range_check(value: i64, min: i32, range: u32, scale: u8, span: Span) -> Result<u32, Option<String>> {
    if value < i64::from(min) {
        emit_error!(span, "Immediate too low");
        return Err(None);
    }

    let biased = value - i64::from(min);

    if biased > i64::from(range) {
        emit_error!(span, "Immediate too high");
        return Err(None);
    }

    let biased = biased as u32;

    if scale != 0 && (biased & bitmask(scale)) != 0 {
        emit_error!(span, "Unrepresentable immediate");
        return Err(None);
    }

    Ok(biased)
}