dynasm\arch\x64/
compiler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
use syn::spanned::Spanned;
use proc_macro2::{Span, TokenTree, Literal};
use quote::{quote_spanned};
use proc_macro_error2::emit_error;

use crate::common::{Stmt, Size, Jump, JumpKind, delimited};
use crate::serialize;

use super::{Context, X86Mode};
use super::ast::{RawArg, CleanArg, SizedArg, Instruction, MemoryRefItem, Register, RegKind, RegFamily, RegId};
use super::x64data::get_mnemnonic_data;
use super::x64data::Flags;
use super::x64data::Features;
use super::debug::format_opdata_list;

use std::mem::swap;
use std::slice;
use std::iter;


/*
 * Instruction encoding data formats
 */

#[derive(Debug)]
pub struct Opdata {
    pub args:  &'static [u8],  // format string of arg format
    pub ops:   &'static [u8],
    pub reg:   u8,
    pub flags: Flags,
    pub features: Features
}

pub struct FormatStringIterator<'a> {
    inner: iter::Cloned<slice::Iter<'a, u8>>
}

impl<'a> FormatStringIterator<'a> {
    pub fn new(buf: &'a [u8]) -> FormatStringIterator<'a> {
        FormatStringIterator { inner: buf.iter().cloned() }
    }
}

impl<'a> Iterator for FormatStringIterator<'a> {
    type Item = (u8, u8);

    fn next(&mut self) -> Option<(u8, u8)> {
        if let Some(ty) = self.inner.next() {
            let size = self.inner.next().expect("Invalid format string data");
            Some((ty, size))
        } else {
            None
        }
    }
}

/*
 * Instruction encoding constants
 */

const MOD_DIRECT: u8 = 0b11;
const MOD_NODISP: u8 = 0b00; // normal addressing
const MOD_NOBASE: u8 = 0b00; // VSIB addressing
const MOD_DISP8:  u8 = 0b01;
const MOD_DISP32: u8 = 0b10;


#[derive(Debug, Clone, Copy)]
enum RelocationKind {
    /// A rip-relative relocation. No need to keep track of.
    Relative,
    // An absolute offset to a rip-relative location.
    Absolute,
    // A relative offset to an absolute location,
    Extern,
}

impl RelocationKind {
    fn to_id(self) -> u8 {
        match self {
            RelocationKind::Relative => 0,
            RelocationKind::Absolute => 1,
            RelocationKind::Extern   => 2
        }
    }
}

/*
 * Implementation
 */

pub(super) fn compile_instruction(ctx: &mut Context, instruction: Instruction, args: Vec<RawArg>) -> Result<(), Option<String>> {
    let mut ops = instruction.idents;
    let op = ops.pop().unwrap();
    let prefixes = ops;

    // Fold RawArgs into CleanArgs
    let mut args = args.into_iter().map(clean_memoryref).collect::<Result<Vec<CleanArg>, _>>()?;

    // sanitize memory references, determine address size, and size immediates/displacements if possible
    let addr_size = sanitize_indirects_and_sizes(ctx, &mut args)?;
    let addr_size = addr_size.unwrap_or(match ctx.mode {
        X86Mode::Long => Size::B_8,
        X86Mode::Protected => Size::B_4
    });

    // determine if we need an address size override prefix
    let pref_addr = match (ctx.mode, addr_size) {
        (X86Mode::Long, Size::B_8) => false,
        (X86Mode::Long, Size::B_4) => true,
        (X86Mode::Protected, Size::B_4) => false,
        (X86Mode::Protected, Size::B_2) => true,
        _ => return Err(Some("Impossible address size".into()))
    };

    // find a matching op
    let data = match_op_format(ctx, &op, &args)?;

    // determine if the features required for this op are fulfilled
    if !ctx.features.contains(data.features) {
        return Err(Some(format!(
            "This instruction uses features that are not indicated to be available: {}",
            data.features - ctx.features
        )));
    }

    // determine legacy prefixes
    let (mut pref_mod, pref_seg) = get_legacy_prefixes(data, prefixes)?;

    // fill in size info from the format string to create the final SizedArg vec
    let (op_size, args) = size_operands(data, args)?;

    let mut pref_size = false;
    let mut rex_w = false;
    let mut vex_l = false;

    // determine if size prefixes are necessary
    if data.flags.intersects(Flags::AUTO_SIZE | Flags::AUTO_NO32 | Flags::AUTO_REXW | Flags::AUTO_VEXL) {
        // if any of these flags are true an operand size should've been calculated
        let op_size = op_size.expect("Bad formatting data? No wildcard sizes");

        match ctx.mode {
            X86Mode::Protected => if op_size == Size::B_8 {
                return Err(Some(format!("'{}': Does not support 64 bit operands in 32-bit mode", op)));
            },
            X86Mode::Long => ()
        }

        if data.flags.contains(Flags::AUTO_NO32) {
            match (op_size, ctx.mode) {
                (Size::B_2, _) => pref_size = true,
                (Size::B_8, X86Mode::Long) => (),
                (Size::B_4, X86Mode::Protected) => (),
                (Size::B_4, X86Mode::Long) => return Err(Some(format!("'{}': Does not support 32 bit operands in 64-bit mode", op))),
                (_, _) => panic!("bad formatting data"),
            }
        } else if data.flags.contains(Flags::AUTO_REXW) {
            if op_size == Size::B_8 {
                rex_w = true;
            } else if op_size != Size::B_4 {
                return Err(Some(format!("'{}': Does not support 16-bit operands", op)));
            }
        } else if data.flags.contains(Flags::AUTO_VEXL) {
            if op_size == Size::B_32 {
                vex_l = true;
            } else if op_size != Size::B_16 {
                panic!("bad formatting data");
            }
        } else if op_size == Size::B_2 {
            pref_size = true;
        } else if op_size == Size::B_8 {
            rex_w = true;
        } else if op_size != Size::B_4 {
            panic!("bad formatting data");
        }
    }

    // mandatory prefixes
    let pref_size = pref_size || data.flags.contains(Flags::WORD_SIZE);
    let rex_w     = rex_w     || data.flags.contains(Flags::WITH_REXW);
    let vex_l     = vex_l     || data.flags.contains(Flags::WITH_VEXL);
    let pref_addr = pref_addr || data.flags.contains(Flags::PREF_67);

    if        data.flags.contains(Flags::PREF_F0) { pref_mod = Some(0xF0);
    } else if data.flags.contains(Flags::PREF_F2) { pref_mod = Some(0xF2);
    } else if data.flags.contains(Flags::PREF_F3) { pref_mod = Some(0xF3);
    }

    // check if this combination of args can actually be encoded and whether a rex prefix is necessary
    let need_rex = check_rex(ctx, data, &args, rex_w)?;

    // split args
    let (mut rm, reg, vvvv, ireg, mut args) = extract_args(data, args);

    // we'll need this to keep track of where relocations need to be made
    // (target, offset, size, kind)
    let mut relocations = Vec::new();

    let mut ops = data.ops;

    // deal with ops that encode the final byte in an immediate
    let immediate_opcode = if data.flags.intersects(Flags::IMM_OP) {
        let (&imm, rest) = ops.split_last().expect("bad formatting data");
        ops = rest;
        Some(imm)
    } else {
        None
    };

    // shorthand
    let buffer = &mut ctx.state.stmts;

    // legacy-only prefixes
    if let Some(pref) = pref_seg {
        buffer.push(Stmt::u8(pref));
    }
    if pref_addr {
        buffer.push(Stmt::u8(0x67));
    }

    // VEX/XOP prefixes embed the operand size prefix / modification prefixes in them.
    if data.flags.intersects(Flags::VEX_OP | Flags::XOP_OP) {
        let prefix = if pref_size        { 0b01
        } else if pref_mod == Some(0xF3) { 0b10
        } else if pref_mod == Some(0xF2) { 0b11
        } else                           { 0
        };
        // map_sel is stored in the first byte of the opcode
        let (&map_sel, tail) = ops.split_first().expect("bad formatting data");
        ops = tail;
        compile_vex_xop(ctx.mode, buffer, data, &reg, &rm, map_sel, rex_w, &vvvv, vex_l, prefix);
    // otherwise, the size/mod prefixes have to be pushed and check if a rex prefix has to be generated.
    } else {
        if let Some(pref) = pref_mod {
            buffer.push(Stmt::u8(pref));
        }
        if pref_size {
            buffer.push(Stmt::u8(0x66));
        }
        if need_rex {
            // Certain SSE/AVX legacy encoded operations are not available in 32-bit mode
            // as they require a REX.W prefix to be encoded, which is impossible. We catch those cases here
            if ctx.mode == X86Mode::Protected {
                return Err(Some(format!("'{}': Does not support 64 bit operand size in 32-bit mode", op)))
            }
            compile_rex(buffer, rex_w, &reg, &rm);
        }
    }

    // if rm is embedded in the last opcode byte, push it here
    if data.flags.contains(Flags::SHORT_ARG) {
        let (last, head) = ops.split_last().expect("bad formatting data");
        ops = head;
        buffer.push(Stmt::Extend(Vec::from(ops)));

        let rm_k = if let Some(SizedArg::Direct {reg, ..}) = rm.take() {
            reg.kind
        } else {
            panic!("bad formatting data")
        };

        if let RegKind::Dynamic(_, expr) = rm_k {
            let last: TokenTree = Literal::u8_suffixed(*last).into();
            buffer.push(Stmt::ExprUnsigned(serialize::expr_mask_shift_or(&last, &delimited(expr), 7, 0), Size::BYTE));
        } else {
            buffer.push(Stmt::u8(last + (rm_k.encode() & 7)));
        }
    // just push the opcode
    } else {
        buffer.push(Stmt::Extend(Vec::from(ops)));
    }

    // Direct ModRM addressing
    if let Some(SizedArg::Direct {reg: rm, ..}) = rm {
        let reg_k = if let Some(SizedArg::Direct {reg, ..}) = reg {
            reg.kind
        } else {
            RegKind::from_number(data.reg)
        };

        compile_modrm_sib(buffer, MOD_DIRECT, reg_k, rm.kind);
    // Indirect ModRM (+SIB) addressing
    } else if let Some(SizedArg::Indirect {disp_size, base, index, disp, ..}) = rm {
        let reg_k = if let Some(SizedArg::Direct {reg, ..}) = reg {
            reg.kind
        } else {
            RegKind::from_number(data.reg)
        };

        // check addressing mode special cases
        let mode_vsib = index.as_ref().map_or(false, |(i, _, _)| i.kind.family() == RegFamily::XMM);
        let mode_16bit = addr_size == Size::B_2;
        let mode_rip_relative = base.as_ref().map_or(false, |b| b.kind.family() == RegFamily::RIP);
        let mode_rbp_base = base.as_ref().map_or(false, |b| b == &RegId::RBP || b == &RegId::R13 || b.kind.is_dynamic());

        if mode_vsib {
            let (index, scale, scale_expr) = index.unwrap();
            let index = index.kind;

            // VSIB addressing has simplified rules.
            let (base, mode) = if let Some(base) = base {
                (base.kind, match (&disp, disp_size) {
                    (&Some(_), Some(Size::BYTE)) => MOD_DISP8,
                    (&Some(_), _) => MOD_DISP32,
                    (&None, _) => MOD_DISP8
                })
            } else {
                (RegKind::Static(RegId::RBP), MOD_NOBASE)
            };

            // always need a SIB byte for VSIB addressing
            compile_modrm_sib(buffer, mode, reg_k, RegKind::Static(RegId::RSP));

            if let Some(expr) = scale_expr {
                compile_sib_dynscale(buffer, scale as u8, expr, index, base);
            } else {
                compile_modrm_sib(buffer, encode_scale(scale).unwrap(), index, base);
            }

            if let Some(disp) = disp {
                buffer.push(Stmt::ExprSigned(delimited(disp), if mode == MOD_DISP8 {Size::BYTE} else {Size::B_4}));
            } else if mode == MOD_DISP8 {
                // no displacement was asked for, but we have to encode one as there's a base
                buffer.push(Stmt::u8(0));
            } else {
                // MODE_NOBASE requires a dword displacement, and if we got here no displacement was asked for.
                buffer.push(Stmt::u32(0));
            }

        } else if mode_16bit {
            // 16-bit mode: the index/base combination has been encoded in the base register.
            // this register is guaranteed to be present.
            let base_k = base.unwrap().kind;
            let mode = match (&disp, disp_size) {
                (&Some(_), Some(Size::BYTE)) => MOD_DISP8,
                (&Some(_), _) => MOD_DISP32, // well, technically 16-bit.
                (&None, _) => if mode_rbp_base {MOD_DISP8} else {MOD_NODISP}
            };

            // only need a mod.r/m byte for 16-bit addressing
            compile_modrm_sib(buffer, mode, reg_k, base_k);

            if let Some(disp) = disp {
                buffer.push(Stmt::ExprSigned(delimited(disp), if mode == MOD_DISP8 {Size::BYTE} else {Size::B_2}));
            } else if mode == MOD_DISP8 {
                buffer.push(Stmt::u8(0));
            }

        } else if mode_rip_relative {
            // encode the RIP + disp32 or disp32 form
            compile_modrm_sib(buffer, MOD_NODISP, reg_k, RegKind::Static(RegId::RBP));

            match ctx.mode {
                X86Mode::Long => if let Some(disp) = disp {
                    buffer.push(Stmt::ExprSigned(delimited(disp), Size::B_4));
                } else {
                    buffer.push(Stmt::u32(0))
                },
                X86Mode::Protected => {
                    // x86 doesn't actually allow RIP-relative addressing
                    // but we can work around it with relocations
                    buffer.push(Stmt::u32(0));
                    let disp = disp.unwrap_or_else(|| serialize::reparse(&serialize::expr_zero()).expect("Invalid expression generated"));
                    relocations.push((Jump::new(JumpKind::Bare(disp), None), 0, Size::B_4, RelocationKind::Absolute));
                },
            }

        } else {
            // normal addressing
            let no_base = base.is_none();

            // RBP can only be encoded as base if a displacement is present.
            let mode = if mode_rbp_base && disp.is_none() {
                MOD_DISP8
            // mode_nodisp if no base is to be encoded. note that in these scenarions a 32-bit disp has to be emitted
            } else if disp.is_none() || no_base {
                MOD_NODISP
            } else if let Some(Size::BYTE) = disp_size {
                MOD_DISP8
            } else {
                MOD_DISP32
            };

            // if there's an index we need to escape into the SIB byte
            if let Some((index, scale, scale_expr)) = index {
                // to encode the lack of a base we encode RBP
                let base = if let Some(base) = base {
                    base.kind
                } else {
                    RegKind::Static(RegId::RBP)
                };

                // escape into the SIB byte
                compile_modrm_sib(buffer, mode, reg_k, RegKind::Static(RegId::RSP));

                if let Some(expr) = scale_expr {
                    compile_sib_dynscale(buffer, scale as u8, expr, index.kind, base);
                } else {
                    compile_modrm_sib(buffer, encode_scale(scale).unwrap(), index.kind, base);
                }

            // no index, only a base. RBP at MOD_NODISP is used to encode RIP, but this is already handled
            } else if let Some(base) = base {
                compile_modrm_sib(buffer, mode, reg_k, base.kind);

            // no base, no index. only disp. Easy in x86, but in x64 escape, use RBP as base and RSP as index
            } else {
                match ctx.mode {
                    X86Mode::Protected => {
                        compile_modrm_sib(buffer, mode, reg_k, RegKind::Static(RegId::RBP));
                    },
                    X86Mode::Long => {
                        compile_modrm_sib(buffer, mode, reg_k, RegKind::Static(RegId::RSP));
                        compile_modrm_sib(buffer, 0, RegKind::Static(RegId::RSP), RegKind::Static(RegId::RBP));
                    }
                }
            }

            // Disp
            if let Some(disp) = disp {
                buffer.push(Stmt::ExprSigned(delimited(disp), if mode == MOD_DISP8 {Size::BYTE} else {Size::B_4}));
            } else if no_base {
                buffer.push(Stmt::u32(0));
            } else if mode == MOD_DISP8 {
                buffer.push(Stmt::u8(0));
            }
        }

    // jump-target relative addressing
    } else if let Some(SizedArg::IndirectJumpTarget {jump, ..}) = rm {
        let reg_k = if let Some(SizedArg::Direct {reg, ..}) = reg {
            reg.kind
        } else {
            RegKind::from_number(data.reg)
        };
        compile_modrm_sib(buffer, MOD_NODISP, reg_k, RegKind::Static(RegId::RBP));

        buffer.push(Stmt::u32(0));
        match ctx.mode {
            X86Mode::Long      => relocations.push((jump, 0, Size::B_4, RelocationKind::Relative)),
            X86Mode::Protected => relocations.push((jump, 0, Size::B_4, RelocationKind::Absolute))
        }
    }

    // opcode encoded after the displacement
    if let Some(code) = immediate_opcode {
        buffer.push(Stmt::u8(code));

        // bump relocations
        relocations.iter_mut().for_each(|r| r.1 += 1);
    }

    // register in immediate argument
    if let Some(SizedArg::Direct {reg: ireg, ..}) = ireg {
        let ireg = ireg.kind;
        let byte = ireg.encode() << 4;

        let mut byte: TokenTree = Literal::u8_suffixed(byte).into();
        if let RegKind::Dynamic(_, expr) = ireg {
            byte = serialize::expr_mask_shift_or(&byte, &delimited(expr), 0xF, 4);
        }
        // if immediates are present, the register argument will be merged into the
        // first immediate byte.
        if !args.is_empty() {
            if let SizedArg::Immediate {value, size: Size::BYTE} = args.remove(0) {
                byte = serialize::expr_mask_shift_or(&byte, &delimited(value), 0xF, 0);
            } else {
                panic!("bad formatting data")
            }
        }
        buffer.push(Stmt::ExprUnsigned(byte, Size::BYTE));

        // bump relocations
        relocations.iter_mut().for_each(|r| r.1 += 1);
    }

    // immediates
    for arg in args {
        match arg {
            SizedArg::Immediate {value, size} => {
                buffer.push(Stmt::ExprSigned(delimited(value), size));

                // bump relocations
                relocations.iter_mut().for_each(|r| r.1 += size.in_bytes());
            },
            SizedArg::JumpTarget {jump, size} => {
                // placeholder
                buffer.push(Stmt::Const(0, size));

                // bump relocations
                relocations.iter_mut().for_each(|r| r.1 += size.in_bytes());

                // add the new relocation
                if let JumpKind::Bare(_) = &jump.kind {
                    match ctx.mode {
                        X86Mode::Protected => relocations.push((jump, 0, size, RelocationKind::Extern)),
                        X86Mode::Long => return Err(Some("Extern relocations are not supported in x64 mode".to_string()))
                    }
                } else {
                    relocations.push((jump, 0, size, RelocationKind::Relative));
                }
            },
            _ => panic!("bad immediate data")
        };
    }

    // push relocations
    for (target, offset, size, kind) in relocations {
        let data = [size.in_bytes(), kind.to_id()];
        let data = match ctx.mode {
            X86Mode::Protected => &data,
            X86Mode::Long      => &data[..1],
        };

        // field offset has been tracked, and ref_offset is 0 as x86 offsets are relative to the end of the instruction
        buffer.push(target.encode(offset + size.in_bytes(), 0, data));
    }

    Ok(())
}

// Folds RawArgs into CleanArgs by analyzing the different raw memoryref variants
fn clean_memoryref(arg: RawArg) -> Result<CleanArg, Option<String>> {
    Ok(match arg {
        RawArg::Direct {reg} => CleanArg::Direct {reg},
        RawArg::JumpTarget {jump, size} => CleanArg::JumpTarget {jump, size},
        RawArg::IndirectJumpTarget {jump, size} => {
            if let JumpKind::Bare(_) = jump.kind {
                return Err(Some("Extern indirect jumps are not supported. Use a displacement".to_string()))
            }
            CleanArg::IndirectJumpTarget {jump, size}
        },
        RawArg::Immediate {value, size} => CleanArg::Immediate {value, size},
        RawArg::Invalid => return Err(None),
        RawArg::IndirectRaw {span, value_size, nosplit, disp_size, items} => {
            // split the ast on the memoryrefitem types
            let mut scaled = Vec::new();
            let mut regs = Vec::new();
            let mut disps = Vec::new();
            for item in items {
                match item {
                    MemoryRefItem::Register(reg) => regs.push(reg),
                    MemoryRefItem::ScaledRegister(reg, value) => scaled.push((reg, value)),
                    MemoryRefItem::Displacement(expr) => disps.push(expr)
                }
            }

            // figure out the base register if possible
            let mut base_reg_index = None;
            for (i, reg) in regs.iter().enumerate() {
                if !(regs.iter().enumerate().any(|(j, other)| i != j && reg == other) ||
                     scaled.iter().any(|(other, _)| reg == other)) {
                    base_reg_index = Some(i);
                    break;
                }
            }
            let mut base = base_reg_index.map(|i| regs.remove(i));

            // join all registers
            scaled.extend(regs.into_iter().map(|r| (r, 1)));
            let mut joined_regs = Vec::new();
            for (reg, s) in scaled {
                // does this register already have a spot?
                if let Some(i) = joined_regs.iter().position(|(other, _)| &reg == other) {
                    joined_regs[i].1 += s;
                } else {
                    joined_regs.push((reg, s));
                }
            }

            // identify an index candidate (and a base if one wasn't found yet)
            let index = if base.is_none() {
                // we have to look for a base candidate first as not all index candidates
                // are viable base candidates
                base_reg_index = joined_regs.iter().position(|&(_, s)| s == 1);
                base = base_reg_index.map(|i| joined_regs.remove(i).0);
                // get the index
                let index = joined_regs.pop();
                // if nosplit was used, a scaled base was found but not an index, swap them
                // as there was only one register and this register was scaled.
                if nosplit && index.is_none() && base.is_some() {
                    base.take().map(|reg| (reg, 1))
                } else {
                    index
                }
            } else {
                joined_regs.pop()
            };


            if !joined_regs.is_empty() {
                emit_error!(span, "Impossible memory argument");
                return Err(None);
            }

            // merge disps
            let disp = serialize::expr_add_many(span, disps.into_iter().map(delimited));
            let disp = disp.map(|d| serialize::reparse(&d).expect("Invalid expression generated internally"));

            // finalize the memoryref
            CleanArg::Indirect {
                span,
                nosplit,
                size: value_size,
                disp_size,
                base,
                index: index.map(|(r, s)| (r, s, None)),
                disp,
            }
        },
        RawArg::TypeMappedRaw {span, base_reg, scale, value_size, nosplit, disp_size, scaled_items, attribute} => {
            let base = base_reg;

            // collect registers / displacements
            let mut scaled = Vec::new();
            let mut disps = Vec::new();
            for item in scaled_items {
                match item {
                    MemoryRefItem::Register(reg) => scaled.push((reg, 1)),
                    MemoryRefItem::ScaledRegister(reg, scale) => scaled.push((reg, scale)),
                    MemoryRefItem::Displacement(expr) => disps.push(expr)
                }
            }

            // join all registers
            let mut joined_regs = Vec::new();
            for (reg, s) in scaled {
                // does this register already have a spot?
                if let Some(i) = joined_regs.iter().position(|(other, _)| &reg == other) {
                    joined_regs[i].1 += s;
                } else {
                    joined_regs.push((reg, s));
                }
            }

            // identify an index register
            let index = joined_regs.pop();

            if !joined_regs.is_empty() {
                emit_error!(span, "Impossible memory argument");
                return Err(None);
            }

            // index = scale * index_scale * index
            // disp = scale * disps + attribute

            // Displacement size calculation intermezzo:
            // in typemaps, the following equations are the relations for the scale and displacement.
            // Now as we can't figure these out at compile time (this'd be nice), by default we'll
            // always generate a 32-bit displacement if disp_size isn't set. This means we know
            // the size of disp at this point already.
            // as for the index calculation: that doesn't change size.
            let true_disp_size = disp_size.unwrap_or(Size::B_4);

            // merge disps [a, b, c] into (a + b + c)
            let scaled_disp = serialize::expr_add_many(span, disps.into_iter().map(delimited));

            // scale disps (a + b + c) * size_of<scale> as disp_size
            let scaled_disp = scaled_disp.map(|disp| serialize::expr_size_of_scale(&scale, &disp, true_disp_size));

            // attribute displacement offset_of(scale, attr) as disp_size
            let attr_disp = attribute.map(|attr| serialize::expr_offset_of(&scale, &attr, true_disp_size));

            // add displacement sources together
            let disp = if let Some(scaled_disp) = scaled_disp {
                if let Some(attr_disp) = attr_disp {
                    serialize::expr_add_many(span, vec![attr_disp, scaled_disp].into_iter())
                } else {
                    Some(scaled_disp)
                }
            } else {
                attr_disp
            };

            let disp = disp.map(|d| serialize::reparse(&d).expect("Invalid expression generated internally"));

            let index = index.map(|(r, s)| {
                let scale_expr = serialize::reparse(&serialize::expr_size_of(&scale)).expect("Invalid expression generated internally");
                (r, s, Some(scale_expr))
            });

            // finalize the memoryref
            CleanArg::Indirect {
                span,
                nosplit,
                size: value_size,
                disp_size,
                base: Some(base),
                index,
                disp,
            }
        },
    })
}

// Go through the CleanArgs, check for impossible to encode indirect arguments, fill in immediate/displacement size information
// and return the effective address size
fn sanitize_indirects_and_sizes(ctx: &Context, args: &mut [CleanArg]) -> Result<Option<Size>, Option<String>> {
    // determine if an address size prefix is necessary, and sanitize the register choice for memoryrefs
    let mut addr_size = None;
    let mut encountered_indirect = false;

    for arg in args.iter_mut() {
        match *arg {
            CleanArg::Indirect {span, nosplit, ref mut disp_size, ref mut base, ref mut index, ref disp, ..} => {

                if encountered_indirect {
                    emit_error!(span, "Multiple memory references in a single instruction")
                }
                encountered_indirect = true;

                // figure out the effective address size and error on impossible combinations
                addr_size = sanitize_indirect(ctx, span, nosplit, base, index)?;

                if let Some((_, scale, _)) = *index {
                    if encode_scale(scale).is_none() {
                        emit_error!(span, "Impossible scale");
                    }
                }

                // if specified, sanitize the displacement size. Else, derive one
                if let Some(size) = *disp_size {
                    if disp.is_none() {
                        emit_error!(span, "Displacement size without displacement");
                    }

                    // 16-bit addressing has smaller displacements
                    if addr_size == Some(Size::B_2) {
                        if size != Size::BYTE && size != Size::B_2 {
                            emit_error!(span, "Invalid displacement size, only BYTE or B_2 are possible");
                        }
                    } else if size != Size::BYTE && size != Size::B_4 {
                        emit_error!(span, "Invalid displacement size, only BYTE or B_4 are possible");
                    }
                } else if let Some(ref disp) = *disp {
                    match derive_size(disp) {
                        Some(Size::BYTE)                         => *disp_size = Some(Size::BYTE),
                        Some(_) if addr_size == Some(Size::B_2) => *disp_size = Some(Size::B_2),
                        Some(_)                                  => *disp_size = Some(Size::B_4),
                        None => ()
                    }
                }
            },
            CleanArg::Immediate {ref value, size: ref mut size @ None} => {
                *size = derive_size(value);
            },
            _ => ()
        }
    }

    Ok(addr_size)
}

// Tries to find the maximum size necessary to hold the result of an expression.
fn derive_size(expr: &syn::Expr) -> Option<Size> {
    // strip any wrapping Group or Paren nodes due to delimiting
    let mut inner = expr;
    loop {
        inner = match inner {
            syn::Expr::Group(syn::ExprGroup { expr, ..}) => expr,
            syn::Expr::Paren(syn::ExprParen { expr, .. }) => expr,
            _ => break
        }
    }

    match inner {
        syn::Expr::Lit(syn::ExprLit { ref lit, .. } ) => match lit {
            syn::Lit::Byte(_) => Some(Size::BYTE),
            syn::Lit::Int(i) => match i.base10_parse::<i32>() {
                Err(_) => Some(Size::B_8),
                Ok(x) if x > 0x7FFF || x < -0x8000 => Some(Size::B_4),
                Ok(x) if x > 0x7F || x < -0x80 => Some(Size::B_2),
                Ok(_) => Some(Size::BYTE),
            },
            _ => None
        },
        syn::Expr::Unary(syn::ExprUnary { op: syn::UnOp::Neg(_), ref expr, .. } ) => match &**expr {
            syn::Expr::Lit(syn::ExprLit { ref lit, .. } ) => match lit {
                syn::Lit::Byte(_) => Some(Size::BYTE),
                syn::Lit::Int(i) => match i.base10_parse::<i64>() {
                    Err(_) => Some(Size::B_8),
                    Ok(x) if x > 0x8000_0000 || x < -0x7FFF_FFFF => Some(Size::B_4),
                    Ok(x) if x > 0x8000 || x < -0x7FFF => Some(Size::B_4),
                    Ok(x) if x > 0x80 || x < -0x7F => Some(Size::B_2),
                    Ok(_) => Some(Size::BYTE),
                },
                _ => None
            },
            _ => None
        },
        _ => None
    }
}

/// Validates that the base/index combination can actually be encoded and returns the effective address size.
/// If the address size can't be determined (purely displacement, or VSIB without base), the result is None.
fn sanitize_indirect(ctx: &Context, span: Span, nosplit: bool, base: &mut Option<Register>,
                     index: &mut Option<(Register, isize, Option<syn::Expr>)>) -> Result<Option<Size>, Option<String>>
{

    // figure out the addressing size/mode used.
    // size can be 16, 32, or 64-bit.
    // mode can be legacy, rip-relative, or vsib
    // note that rip-relative and vsib only support 32 and 64-bit
    let b = base.as_ref().map(|b| (b.kind.family(), b.size()));
    let i = index.as_ref().map(|i| (i.0.kind.family(), i.0.size()));

    let size;
    let family;
    let mut vsib_mode = false;

    // figure out the addressing mode and size
    match (&b, &i) {
        (&None, &None) => return Ok(None),
        (&Some((f, s)), &None) |
        (&None, &Some((f, s))) => {
            size = s;
            family = f;
        },
        (&Some((f1, s1)), &Some((f2, s2))) => if f1 == f2 {
            if s1 != s2 {
                emit_error!(span, "Registers of differing sizes");
                return Err(None);
            }
            size = s1;
            family = f1;

        // allow only vsib addressing
        } else if f1 == RegFamily::XMM {
            vsib_mode = true;
            size = s2;
            family = f2;
        } else if f2 == RegFamily::XMM {
            vsib_mode = true;
            size = s1;
            family = f1;
        } else {
            emit_error!(span, "Register type combination not supported");
            return Err(None);
        }
    }

    // filter out combinations that are impossible to encode
    match family {
        RegFamily::RIP => if b.is_some() && i.is_some() {
            emit_error!(span, "Register type combination not supported");
            return Err(None);
        },
        RegFamily::LEGACY => match size {
            Size::B_4 => (),
            Size::B_8 => (), // only valid in long mode, but should only be possible in long mode
            Size::B_2  => if ctx.mode == X86Mode::Protected || vsib_mode {
                emit_error!(span, "16-bit addressing is not supported in this mode");
                return Err(None);
            },
            _ => {
                emit_error!(span, "Register type not supported");
                return Err(None);
            }
        },
        RegFamily::XMM => if b.is_some() && i.is_some() {
            emit_error!(span, "Register type combination not supported");
        },
        _ => {
            emit_error!(span, "Register type not supported");
            return Err(None);
        }
    }

    // RIP-relative encoding
    if family == RegFamily::RIP {
        // we're guaranteed that RIP is only present as one register.
        match index.take() {
            Some((index, 1, None)) => *base = Some(index),
            Some(_) => {
                emit_error!(span, "RIP cannot be scaled");
                return Err(None);
            },
            None => ()
        }
        return Ok(Some(size));
    }

    // VSIB without base
    // TODO validate index sizes?
    if family == RegFamily::XMM {
        if let Some(reg) = base.take() {
            *index = Some((reg, 1, None));
        }
        return Ok(None);
    }

    // VSIB with base
    if vsib_mode {
        // we're guaranteed that the other register is a legacy register, either B_4 or B_8 size
        // so we just have to check if an index/base swap is necessary
        if base.as_ref().unwrap().kind.family() == RegFamily::XMM {
            // try to swap if possible
            // TODO: honour nosplit?
            if let (ref mut i, 1, None) = index.as_mut().unwrap() {
                swap(i, base.as_mut().unwrap())
            } else {
                emit_error!(span, "vsib addressing requires a general purpose register as base");
                return Err(None);
            }
        }

        return Ok(Some(size));
    }

    // 16-bit legacy addressing
    if size == Size::B_2 {
        // 16-bit addressing has no concept of index.
        let mut first_reg = base.take();
        let mut second_reg = match index.take() {
            Some((i, 1, None)) => Some(i),
            None => None,
            Some(_) => {
                emit_error!(span, "16-bit addressing with scaled index");
                return Err(None);
            },
        };

        if first_reg.is_none() {
            first_reg = second_reg.take();
        }

        let encoded_base = match (&first_reg, &second_reg) {
            (r1, r2) if (r1 == &RegId::RBX && r2 == &RegId::RSI) ||
                        (r1 == &RegId::RSI && r2 == &RegId::RBX) => RegId::from_number(0),
            (r1, r2) if (r1 == &RegId::RBX && r2 == &RegId::RDI) ||
                        (r1 == &RegId::RDI && r2 == &RegId::RBX) => RegId::from_number(1),
            (r1, r2) if (r1 == &RegId::RBP && r2 == &RegId::RSI) ||
                        (r1 == &RegId::RSI && r2 == &RegId::RBP) => RegId::from_number(2),
            (r1, r2) if (r1 == &RegId::RBP && r2 == &RegId::RDI) ||
                        (r1 == &RegId::RDI && r2 == &RegId::RBP) => RegId::from_number(3),
            (r, None) if r == &RegId::RSI => RegId::from_number(4),
            (r, None) if r == &RegId::RDI => RegId::from_number(5),
            (r, None) if r == &RegId::RBP => RegId::from_number(6),
            (r, None) if r == &RegId::RBX => RegId::from_number(7),
            _ => {
                emit_error!(span, "Impossible register combination");
                return Err(None);
            }
        };

        *base = Some(Register::new_static(Size::B_2, encoded_base));
        return Ok(Some(size));
    }

    // normal addressing

    // optimize indexes if a base is not present
    if !nosplit && base.is_none() {
        if let Some((ref reg, ref mut scale, None)) = *index {
            match *scale {
                2 | 3 | 5 | 9 => {
                    *base = Some(reg.clone());
                    *scale -= 1
                },
                _ => ()
            }
        }
    }

    // RSP as index field can not be represented. Check if we can swap it with base
    if let Some((i, scale, scale_expr)) = index.take() {
        if i == RegId::RSP {
            if *base != RegId::RSP && scale == 1 && scale_expr.is_none() {
                *index = base.take().map(|reg| (reg, 1, None));
                *base = Some(i);
            } else {
                emit_error!(span, "'rsp' cannot be used as index field");
                return Err(None);
            }
        } else {
            *index = Some((i, scale, scale_expr))
        }
    }

    // RSP, R12 or a dynamic register as base without index (add an index so we escape into SIB)
    if index.is_none() && (*base == RegId::RSP || *base == RegId::R12 || base.as_ref().map_or(false, |r| r.kind.is_dynamic())) {
        *index = Some((Register::new_static(size, RegId::RSP), 1, None));
    }

    // RBP as base field just requires a mandatory MOD_DISP8, so we only process that at encoding time
    Ok(Some(size))
}

fn match_op_format(ctx: &Context, ident: &syn::Ident, args: &[CleanArg]) -> Result<&'static Opdata, Option<String>> {
    let name = ident.to_string();
    let name = name.as_str();

    let data = if let Some(data) = get_mnemnonic_data(name) {
        data
    } else {
        emit_error!(ident, "'{}' is not a valid instruction", name);
        return Err(None);
    };

    for format in data {
        if let Ok(()) = match_format_string(ctx, format, args) {
            return Ok(format);
        }
    }

    Err(Some(
        format!("'{}': argument type/size mismatch, expected one of the following forms:\n{}", name, format_opdata_list(name, data))
    ))
}

fn match_format_string(ctx: &Context, fmt: &Opdata, args: &[CleanArg]) -> Result<(), &'static str> {
    let fmtstr = &fmt.args;

    if ctx.mode != X86Mode::Protected && fmt.flags.intersects(Flags::X86_ONLY) {
        return Err("Not available in 32-bit mode");
    }

    if fmtstr.len() != args.len() * 2 {
        return Err("argument length mismatch");
    }
    // i : immediate
    // o : instruction offset

    // m : memory
    // k : vsib addressing, 32 bit result, size determines xmm or ymm
    // l : vsib addressing, 64 bit result, size determines xmm or ymm

    // r : legacy reg
    // f : fp reg
    // x : mmx reg
    // y : xmm/ymm reg
    // s : segment reg
    // c : control reg
    // d : debug reg
    // b : bound reg

    // v : r and m
    // u : x and m
    // w : y and m

    // A ..= P: match rax - r15
    // Q ..= V: match es, cs, ss, ds, fs, gs
    // W: matches CR8
    // X: matches st0

    // b, w, d, q, o, h, t match a byte, word (2 bytes), doubleword (4 bytes), quadword (8 bytes), 16 bytes, 32 bytes and 64 bytes
    // p matches a PWORD (10 bytes)
    // f matches an FWORD (6 bytes)
    // * matches all possible sizes for this operand (w/d for i, w/d/q for r/v, o/h for y/w and everything for m)
    // ! matches a lack of size, only useful in combination with m
    // ? matches any size and doesn't participate in the operand size calculation
    let mut args = args.iter();
    for (code, fsize) in FormatStringIterator::new(fmtstr) {
        let arg = args.next().unwrap();

        let size = match (code, arg) {
            // immediates
            (b'i', &CleanArg::Immediate{size, ..})  |
            (b'o', &CleanArg::Immediate{size, ..})  |
            (b'o', &CleanArg::JumpTarget{size, ..}) => size,

            // specific legacy regs
            (x @ b'A' ..= b'P', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::LEGACY &&
                reg.kind.code() == Some(x - b'A') => Some(reg.size()),

            // specific segment regs
            (x @ b'Q' ..= b'V', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::SEGMENT &&
                reg.kind.code() == Some(x - b'Q') => Some(reg.size()),

            // CR8 can be specially referenced
            (b'W', CleanArg::Direct{reg, ..}) if
                reg.kind == RegId::CR8 => Some(reg.size()),

            // top of the fp stack is also often used
            (b'X', CleanArg::Direct{reg, ..}) if
                reg.kind == RegId::ST0 => Some(reg.size()),

            // generic legacy regs
            (b'r', CleanArg::Direct{reg, ..}) |
            (b'v', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::LEGACY ||
                reg.kind.family() == RegFamily::HIGHBYTE => Some(reg.size()),

            // other reg types often mixed with memory refs
            (b'x', CleanArg::Direct{reg, ..}) |
            (b'u', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::MMX => Some(reg.size()),
            (b'y', CleanArg::Direct{reg, ..}) |
            (b'w', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::XMM => Some(reg.size()),

            // other reg types
            (b'f', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::FP => Some(reg.size()),
            (b's', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::SEGMENT => Some(reg.size()),
            (b'c', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::CONTROL => Some(reg.size()),
            (b'd', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::DEBUG => Some(reg.size()),
            (b'b', CleanArg::Direct{reg, ..}) if
                reg.kind.family() == RegFamily::BOUND => Some(reg.size()),

            // memory offsets
            (b'm',          &CleanArg::Indirect {size, ref index, ..}) |
            (b'u' ..= b'w', &CleanArg::Indirect {size, ref index, ..}) if
                index.is_none() || index.as_ref().unwrap().0.kind.family() != RegFamily::XMM => size,

            (b'm',          &CleanArg::IndirectJumpTarget {size, ..}) |
            (b'u' ..= b'w', &CleanArg::IndirectJumpTarget {size, ..}) => size,

            // vsib addressing. as they have two sizes that must be checked they check one of the sizes here
            (b'k', &CleanArg::Indirect {size, index: Some((ref index, _, _)), ..}) if
                (size.is_none() || size == Some(Size::B_4)) &&
                index.kind.family() == RegFamily::XMM => Some(index.size()),
            (b'l', &CleanArg::Indirect {size, index: Some((ref index, _, _)), ..}) if
                (size.is_none() ||  size == Some(Size::B_8)) &&
                index.kind.family() == RegFamily::XMM => Some(index.size()),
            _ => return Err("argument type mismatch")
        };

        // if size is none it always matches (and will later be coerced to a more specific type if the match is successful)
        if let Some(size) = size {
            if !match (fsize, code) {
                // immediates can always fit in larger slots
                (b'w', b'i') => size <= Size::B_2,
                (b'd', b'i') => size <= Size::B_4,
                (b'q', b'i') => size <= Size::B_8,
                (b'*', b'i') => size <= Size::B_4,
                // normal size matches
                (b'b', _)    => size == Size::BYTE,
                (b'w', _)    => size == Size::B_2,
                (b'd', _)    => size == Size::B_4,
                (b'q', _)    => size == Size::B_8,
                (b'f', _)    => size == Size::B_6,
                (b'p', _)    => size == Size::B_10,
                (b'o', _)    => size == Size::B_16,
                (b'h', _)    => size == Size::B_32,
                (b't', _)    => size == Size::B_64,
                // what is allowed for wildcards
                (b'*', b'k') |
                (b'*', b'l') |
                (b'*', b'y') |
                (b'*', b'w') => size == Size::B_16 || size == Size::B_32,
                (b'*', b'r') |
                (b'*', b'A' ..= b'P') |
                (b'*', b'v') => size == Size::B_2 || size == Size::B_4 || size == Size::B_8,
                (b'*', b'm') => true,
                (b'*', _)    => panic!("Invalid size wildcard"),
                (b'?', _)    => true,
                (b'!', _)    => false,
                _ => panic!("invalid format string")
            } {
                return Err("argument size mismatch");
            }
        } else if fsize != b'*' && fmt.flags.contains(Flags::EXACT_SIZE) {
            // Basically, this format is a more specific version of an instruction
            // that also has more general versions. This should only be picked
            // if the size constraints are met, not if the size is unspecified
            return Err("alternate variant exists");
        }
    }

    // match found
    Ok(())
}

fn size_operands(fmt: &Opdata, args: Vec<CleanArg>) -> Result<(Option<Size>, Vec<SizedArg>), Option<String>> {
    // sizing operands requires two passes.
    // In the first one, we determine the effective operand size if necessary (if *'s are present)
    // In the second one, we create the final sized AST

    let mut has_arg = false;
    let mut op_size = None;
    let mut im_size = None;

    // operand size determination loop
    for (arg, (_, fsize)) in args.iter().zip(FormatStringIterator::new(fmt.args)) {
        if fsize != b'*' {
            continue;
        }

        match *arg {
            CleanArg::Direct {ref reg, ..} => {
                has_arg = true;
                let size = reg.size();
                if op_size.map_or(false, |s| s != size,) {
                    return Err(Some("Conflicting operand sizes".to_string()));
                }
                op_size = Some(size);
            },
            CleanArg::IndirectJumpTarget {size, ..} => {
                has_arg = true;
                if let Some(size) = size {
                    if op_size.map_or(false, |s| s != size) {
                        return Err(Some("Conflicting operand sizes".to_string()));
                    }
                    op_size = Some(size);
                }
            }
            CleanArg::Indirect {mut size, ref index, ..} => {
                has_arg = true;
                // VSIB addressing
                if let Some((ref reg, _, _)) = *index {
                    if reg.kind.family() == RegFamily::XMM {
                        size = Some(reg.size());
                    }
                }

                if let Some(size) = size {
                    if op_size.map_or(false, |s| s != size) {
                        return Err(Some("Conflicting operand sizes".to_string()));
                    }
                    op_size = Some(size);
                }
            },
            CleanArg::Immediate {size, ..} |
            CleanArg::JumpTarget {size, ..} => {
                if im_size.is_some() {
                    panic!("Bad formatting data? multiple immediates with wildcard size");
                }
                im_size = size;
            }
        }
    }

    if let Some(o) = op_size {
        let ref_im_size = if o > Size::B_4 {Size::B_4} else {o};
        if let Some(i) = im_size {
            if i > ref_im_size {
                return Err(Some("Immediate size mismatch".to_string()));
            }
        }
        im_size = Some(ref_im_size);
    } else if has_arg {
        return Err(Some("Unknown operand size".to_string()));
    }

    // fill-in loop. default should never be used.
    let mut new_args = Vec::new();
    for (arg, (code, fsize)) in args.into_iter().zip(FormatStringIterator::new(fmt.args)) {

        //get the specified operand size from the format string
        let size = match (fsize, code) {
            (b'b', _) => Size::BYTE,
            (b'w', _) => Size::B_2,
            (_, b'k') |
            (b'd', _) => Size::B_4,
            (_, b'l') |
            (b'q', _) => Size::B_8,
            (b'f', _) => Size::B_6,
            (b'p', _) => Size::B_10,
            (b'o', _) => Size::B_16,
            (b'h', _) => Size::B_32,
            (b'*', b'i') => im_size.unwrap(),
            (b'*', _) => op_size.unwrap(),
            (b'!', _) => Size::BYTE, // will never be used, placeholder
            _ => unreachable!()
        };

        new_args.push(match arg {
            CleanArg::Direct {reg} =>
                SizedArg::Direct {reg},
            CleanArg::JumpTarget {jump, ..} =>
                SizedArg::JumpTarget {jump, size},
            CleanArg::IndirectJumpTarget {jump, ..} =>
                SizedArg::IndirectJumpTarget {jump},
            CleanArg::Immediate {value, ..} =>
                SizedArg::Immediate {value, size},
            CleanArg::Indirect {disp_size, base, index, disp, ..} =>
                SizedArg::Indirect {disp_size, base, index, disp},
        });
    }

    Ok((op_size, new_args))
}

fn get_legacy_prefixes(fmt: &'static Opdata, idents: Vec<syn::Ident>) -> Result<(Option<u8>, Option<u8>), Option<String>> {
    let mut group1 = None;
    let mut group2 = None;

    for prefix in idents {
        let name = prefix.to_string();
        let (group, value) = match name.as_str() {
            "rep"   => if fmt.flags.contains(Flags::REP) {
                (&mut group1, 0xF3)
            } else {
                emit_error!(prefix, "Cannot use prefix {} on this instruction", name);
                return Err(None);
            },
            "repe"  |
            "repz"  => if fmt.flags.contains(Flags::REPE) {
                (&mut group1, 0xF3)
            } else {
                emit_error!(prefix, "Cannot use prefix {} on this instruction", name);
                return Err(None);
            },
            "repnz" |
            "repne" => if fmt.flags.contains(Flags::REPE) {
                (&mut group1, 0xF2)
            } else {
                emit_error!(prefix, "Cannot use prefix {} on this instruction", name);
                return Err(None);
            },
            "lock"  => if fmt.flags.contains(Flags::LOCK) {
                (&mut group1, 0xF0)
            } else {
                emit_error!(prefix, "Cannot use prefix {} on this instruction", name);
                return Err(None);
            },
            "ss"    => (&mut group2, 0x36),
            "cs"    => (&mut group2, 0x2E),
            "ds"    => (&mut group2, 0x3E),
            "es"    => (&mut group2, 0x26),
            "fs"    => (&mut group2, 0x64),
            "gs"    => (&mut group2, 0x65),
            _       => panic!("unimplemented prefix")
        };
        if group.is_some() {
            emit_error!(prefix, "Duplicate prefix group");
            return Err(None);
        }
        *group = Some(value);
    }

    Ok((group1, group2))
}

fn check_rex(ctx: &Context, fmt: &'static Opdata, args: &[SizedArg], rex_w: bool) -> Result<bool, Option<String>> {
    // performs checks for not encodable arg combinations
    // output arg indicates if a rex prefix can be encoded
    if ctx.mode == X86Mode::Protected {
        if rex_w {
            return Err(Some("Does not support 64 bit operand size in 32-bit mode".to_string()));
        } else {
            return Ok(false);
        }
    }

    let mut requires_rex    = rex_w;
    let mut requires_no_rex = false;

    for (arg, (c, _)) in args.iter().zip(FormatStringIterator::new(fmt.args)) {
        // only scan args that are actually encoded
        if let b'a' ..= b'z' = c {
            match *arg {
                SizedArg::Direct {ref reg, ..} => {
                    if reg.kind.family() == RegFamily::HIGHBYTE {
                        requires_no_rex = true;

                    } else if reg.kind.is_extended() || (reg.size() == Size::BYTE &&
                        (reg.kind == RegId::RSP || reg.kind == RegId::RBP || reg.kind == RegId::RSI || reg.kind == RegId::RDI)) {
                        requires_rex = true;
                    }
                },
                SizedArg::Indirect {ref base, ref index, ..} => {
                    if let Some(ref reg) = *base {
                        requires_rex = requires_rex || reg.kind.is_extended();
                    }
                    if let Some((ref reg, _, _)) = *index {
                        requires_rex = requires_rex || reg.kind.is_extended();
                    }
                },
                _ => (),
            }
        }
    }

    if requires_rex && requires_no_rex {
        Err(Some("High byte register combined with extended registers or 64-bit operand size".to_string()))
    } else {
        Ok(requires_rex)
    }
}

fn extract_args(fmt: &'static Opdata, args: Vec<SizedArg>) -> (Option<SizedArg>, Option<SizedArg>, Option<SizedArg>, Option<SizedArg>, Vec<SizedArg>) {
    // way operand order works:

    // if there's a memory/reg operand, this operand goes into modrm.r/m
    // if there's a segment/control/debug register, it goes into reg.

    // default argument encoding order is as follows:
    // no encoding flag: m, rm, rvm, rvim
    // ENC_MR:              mr, rmv, rvmi
    // ENC_VM:              vm, mvr
    // these can also be chosen based on the location of a memory argument (except for vm)

    let mut memarg = None;
    let mut regarg = None;
    let mut regs = Vec::new();
    let mut immediates = Vec::new();

    for (arg, (c, _)) in args.into_iter().zip(FormatStringIterator::new(fmt.args)) {
        match c {
            b'm' | b'u' | b'v' | b'w' | b'k' | b'l'  => if memarg.is_some() {
                panic!("multiple memory arguments in format string");
            } else {
                memarg = Some(regs.len());
                regs.push(arg)
            },
            b'f' | b'x' | b'r' | b'y' | b'b' => regs.push(arg),
            b'c' | b'd' | b's'        => if regarg.is_some() {
                panic!("multiple segment, debug or control registers in format string");
            } else {
                regarg = Some(regs.len());
                regs.push(arg)
            },
            b'i' | b'o' => immediates.push(arg),
            _ => () // hardcoded regs don't have to be encoded
        }
    }

    let len = regs.len();
    if len > 4 {
        panic!("too many arguments");
    }
    let mut regs = regs.drain(..).fuse();

    let mut m = None;
    let mut r = None;
    let mut v = None;
    let mut i = None;

    if let Some(i) = regarg {
        if i == 0 {
            r = regs.next();
            m = regs.next();
        } else {
            m = regs.next();
            r = regs.next();
        }
    } else if len == 1 {
        m = regs.next();
    } else if len == 2 {
        if fmt.flags.contains(Flags::ENC_MR) || memarg == Some(0) {
            m = regs.next();
            r = regs.next();
        } else if fmt.flags.contains(Flags::ENC_VM) {
            v = regs.next();
            m = regs.next();
        } else {
            r = regs.next();
            m = regs.next();
        }
    } else if len == 3 {
        if fmt.flags.contains(Flags::ENC_MR) || memarg == Some(1) {
            r = regs.next();
            m = regs.next();
            v = regs.next();
        } else if fmt.flags.contains(Flags::ENC_VM) || memarg == Some(0) {
            m = regs.next();
            v = regs.next();
            r = regs.next();
        } else {
            r = regs.next();
            v = regs.next();
            m = regs.next();
        }
    } else if len == 4 {
        if fmt.flags.contains(Flags::ENC_MR) || memarg == Some(2) {
            r = regs.next();
            v = regs.next();
            m = regs.next();
            i = regs.next();
        } else {
            r = regs.next();
            v = regs.next();
            i = regs.next();
            m = regs.next();
        }
    }

    (m, r, v, i, immediates)
}

fn encode_scale(scale: isize) -> Option<u8> {
    match scale {
        1 => Some(0),
        2 => Some(1),
        4 => Some(2),
        8 => Some(3),
        _ => None
    }
}

fn compile_rex(buffer: &mut Vec<Stmt>, rex_w: bool, reg: &Option<SizedArg>, rm: &Option<SizedArg>) {
    let mut reg_k   = RegKind::from_number(0);
    let mut index_k = RegKind::from_number(0);
    let mut base_k  = RegKind::from_number(0);

    if let Some(SizedArg::Direct {ref reg, ..}) = *reg {
        reg_k = reg.kind.clone();
    }
    if let Some(SizedArg::Direct {ref reg, ..}) = *rm {
        base_k = reg.kind.clone();
    }
    if let Some(SizedArg::Indirect {ref base, ref index, ..} ) = *rm {
        if let Some(ref base) = *base {
            base_k = base.kind.clone();
        }
        if let Some((ref index, _, _)) = *index {
            index_k = index.kind.clone();
        }
    }

    let rex = 0x40 | (rex_w          as u8) << 3 |
                     (reg_k.encode()   & 8) >> 1 |
                     (index_k.encode() & 8) >> 2 |
                     (base_k.encode()  & 8) >> 3 ;
    if !reg_k.is_dynamic() && !index_k.is_dynamic() && !base_k.is_dynamic() {
        buffer.push(Stmt::u8(rex));
        return;
    }

    let mut rex: TokenTree = Literal::u8_suffixed(rex).into();

    if let RegKind::Dynamic(_, expr) = reg_k {
        rex = serialize::expr_mask_shift_or(&rex, &delimited(expr), 8, -1);
    }
    if let RegKind::Dynamic(_, expr) = index_k {
        rex = serialize::expr_mask_shift_or(&rex, &delimited(expr), 8, -2);
    }
    if let RegKind::Dynamic(_, expr) = base_k {
        rex = serialize::expr_mask_shift_or(&rex, &delimited(expr), 8, -3);
    }
    buffer.push(Stmt::ExprUnsigned(rex, Size::BYTE));
}

fn compile_vex_xop(mode: X86Mode, buffer: &mut Vec<Stmt>, data: &'static Opdata, reg: &Option<SizedArg>,
rm: &Option<SizedArg>, map_sel: u8, rex_w: bool, vvvv: &Option<SizedArg>, vex_l: bool, prefix: u8) {
    let mut reg_k   = RegKind::from_number(0);
    let mut index_k = RegKind::from_number(0);
    let mut base_k  = RegKind::from_number(0);
    let mut vvvv_k  = RegKind::from_number(0);

    let byte1 = match mode {
        X86Mode::Long => {
            if let Some(SizedArg::Direct {ref reg, ..}) = *reg {
                reg_k = reg.kind.clone();
            }
            if let Some(SizedArg::Direct {ref reg, ..}) = *rm {
                base_k = reg.kind.clone();
            }
            if let Some(SizedArg::Indirect {ref base, ref index, ..}) = *rm {
                if let Some(ref base) = *base {
                    base_k = base.kind.clone();
                }
                if let Some((ref index, _, _)) = *index {
                    index_k = index.kind.clone();
                }
            }

            (map_sel        & 0x1F)      |
            (!reg_k.encode()   & 8) << 4 |
            (!index_k.encode() & 8) << 3 |
            (!base_k.encode()  & 8) << 2
        },
        X86Mode::Protected => {
            (map_sel & 0x1f) | 0xE0
        }
    };

    if let Some(SizedArg::Direct {ref reg, ..}) = *vvvv {
        vvvv_k = reg.kind.clone();
    }

    let byte2 = (prefix           & 0x3)      |
                (rex_w            as u8) << 7 |
                (!vvvv_k.encode() & 0xF) << 3 |
                (vex_l            as u8) << 2 ;

    if data.flags.contains(Flags::VEX_OP) && (byte1 & 0x7F) == 0x61 && (byte2 & 0x80) == 0 &&
    ((!index_k.is_dynamic() && !base_k.is_dynamic()) || mode == X86Mode::Protected) {
        // 2-byte vex
        buffer.push(Stmt::u8(0xC5));

        let byte1 = (byte1 & 0x80) | (byte2 & 0x7F);
        if !reg_k.is_dynamic() && !vvvv_k.is_dynamic() {
            buffer.push(Stmt::u8(byte1));
            return;
        }

        let mut byte1: TokenTree = Literal::u8_suffixed(byte1).into();
        if let RegKind::Dynamic(_, expr) = reg_k {
            byte1 = serialize::expr_mask_shift_inverted_and(&byte1, &delimited(expr), 8, 4)
        }
        if let RegKind::Dynamic(_, expr) = vvvv_k {
            byte1 = serialize::expr_mask_shift_inverted_and(&byte1, &delimited(expr), 0xF, 3)
        }
        buffer.push(Stmt::ExprUnsigned(byte1, Size::BYTE));
        return;
    }

    buffer.push(Stmt::u8(if data.flags.contains(Flags::VEX_OP) {0xC4} else {0x8F}));

    if mode == X86Mode::Long && (reg_k.is_dynamic() || index_k.is_dynamic() || base_k.is_dynamic()) {
        let mut byte1: TokenTree = Literal::u8_suffixed(byte1).into();

        if let RegKind::Dynamic(_, expr) = reg_k {
            byte1 = serialize::expr_mask_shift_inverted_and(&byte1, &delimited(expr), 8, 4);
        }
        if let RegKind::Dynamic(_, expr) = index_k {
            byte1 = serialize::expr_mask_shift_inverted_and(&byte1, &delimited(expr), 8, 3);
        }
        if let RegKind::Dynamic(_, expr) = base_k {
            byte1 = serialize::expr_mask_shift_inverted_and(&byte1, &delimited(expr), 8, 2);
        }
        buffer.push(Stmt::ExprUnsigned(byte1, Size::BYTE));
    } else {
        buffer.push(Stmt::u8(byte1));
    }

    if vvvv_k.is_dynamic() {
        let mut byte2: TokenTree = Literal::u8_suffixed(byte2).into();

        if let RegKind::Dynamic(_, expr) = vvvv_k {
            byte2 = serialize::expr_mask_shift_inverted_and(&byte2, &delimited(expr), 0xF, 3)
        }
        buffer.push(Stmt::ExprUnsigned(byte2, Size::BYTE));
    } else {
        buffer.push(Stmt::u8(byte2));
    }
}

fn compile_modrm_sib(buffer: &mut Vec<Stmt>, mode: u8, reg1: RegKind, reg2: RegKind) {
    let byte = mode                << 6 |
              (reg1.encode()  & 7) << 3 |
              (reg2.encode()  & 7)      ;

    if !reg1.is_dynamic() && !reg2.is_dynamic() {
        buffer.push(Stmt::u8(byte));
        return;
    }

    let mut byte: TokenTree = Literal::u8_suffixed(byte).into();

    if let RegKind::Dynamic(_, expr) = reg1 {
        byte = serialize::expr_mask_shift_or(&byte, &delimited(expr), 7, 3);
    }
    if let RegKind::Dynamic(_, expr) = reg2 {
        byte = serialize::expr_mask_shift_or(&byte, &delimited(expr), 7, 0);
    }
    buffer.push(Stmt::ExprUnsigned(byte, Size::BYTE));
}

fn compile_sib_dynscale(buffer: &mut Vec<Stmt>, scale: u8, scale_expr: syn::Expr, reg1: RegKind, reg2: RegKind) {
    let byte = (reg1.encode()  & 7) << 3 |
               (reg2.encode()  & 7)      ;

    let mut byte: TokenTree = Literal::u8_suffixed(byte).into();
    let scale: TokenTree = Literal::u8_unsuffixed(scale).into();

    if let RegKind::Dynamic(_, expr) = reg1 {
        byte = serialize::expr_mask_shift_or(&byte, &delimited(expr), 7, 3);
    }
    if let RegKind::Dynamic(_, expr) = reg2 {
        byte = serialize::expr_mask_shift_or(&byte, &delimited(expr), 7, 0);
    }

    let span = scale_expr.span();
    let scale_expr = delimited(scale_expr);

    let expr = delimited(quote_spanned!{ span=>
        ((
            match #scale_expr * #scale {
                8 => 3,
                4 => 2,
                2 => 1,
                1 => 0,
                _ => panic!("Type size not representable as scale")
            }
        & 3) << 6) | #byte
    });

    buffer.push(Stmt::ExprUnsigned(expr, Size::BYTE));
}