dynasm/common.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
//! This module contains various infrastructure that is common across all assembler backends
use proc_macro2::{Span, TokenTree, TokenStream, Literal, Group, Delimiter};
use quote::ToTokens;
use syn::spanned::Spanned;
use syn::parse;
use syn::Token;
use crate::parse_helpers::{ParseOpt, eat_pseudo_keyword};
use crate::serialize;
/// Enum representing the result size of a value/expression/register/etc in bytes.
/// just friendly names really
#[allow(non_camel_case_types)]
#[derive(Debug, PartialOrd, PartialEq, Ord, Eq, Hash, Clone, Copy)]
pub enum Size {
BYTE = 1,
B_2 = 2,
B_4 = 4,
B_6 = 6,
B_8 = 8,
B_10 = 10,
B_16 = 16,
B_32 = 32,
B_64 = 64,
}
impl Size {
pub fn in_bytes(self) -> u8 {
self as u8
}
pub fn as_literal(self) -> syn::Ident {
syn::Ident::new(match self {
Size::BYTE => "i8",
Size::B_2 => "i16",
Size::B_4 => "i32",
Size::B_6 => "i48",
Size::B_8 => "i64",
Size::B_10 => "i80",
Size::B_16 => "i128",
Size::B_32 => "i256",
Size::B_64 => "i512",
}, Span::mixed_site())
}
}
/**
* Jump types
*/
#[derive(Debug, Clone)]
pub struct Jump {
pub kind: JumpKind,
pub offset: Option<syn::Expr>
}
#[derive(Debug, Clone)]
pub enum JumpKind {
// note: these symbol choices try to avoid stuff that is a valid starting symbol for parse_expr
// in order to allow the full range of expressions to be used. the only currently existing ambiguity is
// with the symbol <, as this symbol is also the starting symbol for the universal calling syntax <Type as Trait>.method(args)
Global(syn::Ident), // -> label (["+" "-"] offset)?
Backward(syn::Ident), // > label (["+" "-"] offset)?
Forward(syn::Ident), // < label (["+" "-"] offset)?
Dynamic(syn::Expr), // =>expr | => (expr) (["+" "-"] offset)?
Bare(syn::Expr) // jump to this address
}
impl ParseOpt for Jump {
fn parse(input: parse::ParseStream) -> parse::Result<Option<Jump>> {
// extern label
if eat_pseudo_keyword(input, "extern") {
let expr: syn::Expr = input.parse()?;
return Ok(Some(Jump { kind: JumpKind::Bare(expr), offset: None }));
}
// -> global_label
let kind = if input.peek(Token![->]) {
let _: Token![->] = input.parse()?;
let name: syn::Ident = input.parse()?;
JumpKind::Global(name)
// > forward_label
} else if input.peek(Token![>]) {
let _: Token![>] = input.parse()?;
let name: syn::Ident = input.parse()?;
JumpKind::Forward(name)
// < backwards_label
} else if input.peek(Token![<]) {
let _: Token![<] = input.parse()?;
let name: syn::Ident = input.parse()?;
JumpKind::Backward(name)
// => dynamic_label
} else if input.peek(Token![=>]) {
let _: Token![=>] = input.parse()?;
let expr: syn::Expr = if input.peek(syn::token::Paren) {
let inner;
let _ = syn::parenthesized!(inner in input);
let inner = &inner;
inner.parse()?
} else {
input.parse()?
};
JumpKind::Dynamic(expr)
// nothing
} else {
return Ok(None);
};
// parse optional offset
let offset = if input.peek(Token![-]) || input.peek(Token![+]) {
if input.peek(Token![+]) {
let _: Token![+] = input.parse()?;
}
let expr: syn::Expr = input.parse()?;
Some(expr)
} else {
None
};
Ok(Some(Jump::new(kind, offset)))
}
}
impl Jump {
pub fn new(kind: JumpKind, offset: Option<syn::Expr>) -> Jump {
Jump {
kind,
offset
}
}
/// Takes a jump and encodes it as a relocation starting `start_offset` bytes ago, relative to `ref_offset`.
/// Any data detailing the type of relocation emitted should be contained in `data`, which is emitted as a tuple of u8's.
pub fn encode(self, field_offset: u8, ref_offset: u8, data: &[u8]) -> Stmt {
let span = self.span();
let target_offset = if let Some(offset) = self.offset {
delimited(offset)
} else {
TokenTree::Literal(Literal::isize_suffixed(0))
};
// Create a relocation descriptor, containing all information about the actual jump except for the target itself.
let relocation = Relocation {
target_offset,
field_offset,
ref_offset,
kind: serialize::expr_tuple_of_u8s(span, data)
};
match self.kind {
JumpKind::Global(ident) => Stmt::GlobalJumpTarget(ident, relocation),
JumpKind::Backward(ident) => Stmt::BackwardJumpTarget(ident, relocation),
JumpKind::Forward(ident) => Stmt::ForwardJumpTarget(ident, relocation),
JumpKind::Dynamic(expr) => Stmt::DynamicJumpTarget(delimited(expr), relocation),
JumpKind::Bare(expr) => Stmt::BareJumpTarget(delimited(expr), relocation),
}
}
pub fn span(&self) -> Span {
match &self.kind {
JumpKind::Global(ident) => ident.span(),
JumpKind::Backward(ident) => ident.span(),
JumpKind::Forward(ident) => ident.span(),
JumpKind::Dynamic(expr) => expr.span(),
JumpKind::Bare(expr) => expr.span(),
}
}
}
/// A relocation entry description
#[derive(Debug, Clone)]
pub struct Relocation {
pub target_offset: TokenTree,
pub field_offset: u8,
pub ref_offset: u8,
pub kind: TokenTree,
}
/// An abstract representation of a dynasm runtime statement to be emitted
#[derive(Debug, Clone)]
pub enum Stmt {
// simply push data into the instruction stream. unsigned
Const(u64, Size),
// push data that is stored inside of an expression. unsigned
ExprUnsigned(TokenTree, Size),
// push signed data into the instruction stream. signed
ExprSigned(TokenTree, Size),
// extend the instruction stream with unsigned bytes
Extend(Vec<u8>),
// extend the instruction stream with unsigned bytes
ExprExtend(TokenTree),
// align the instruction stream to some alignment
Align(TokenTree, TokenTree),
// label declarations
GlobalLabel(syn::Ident),
LocalLabel(syn::Ident),
DynamicLabel(TokenTree),
// and their respective relocations (as expressions as they differ per assembler).
GlobalJumpTarget(syn::Ident, Relocation),
ForwardJumpTarget(syn::Ident, Relocation),
BackwardJumpTarget(syn::Ident, Relocation),
DynamicJumpTarget(TokenTree, Relocation),
BareJumpTarget(TokenTree, Relocation),
// a random statement that has to be inserted between assembly hunks
Stmt(TokenStream)
}
// convenience methods
impl Stmt {
#![allow(dead_code)]
pub fn u8(value: u8) -> Stmt {
Stmt::Const(u64::from(value), Size::BYTE)
}
pub fn u16(value: u16) -> Stmt {
Stmt::Const(u64::from(value), Size::B_2)
}
pub fn u32(value: u32) -> Stmt {
Stmt::Const(u64::from(value), Size::B_4)
}
pub fn u64(value: u64) -> Stmt {
Stmt::Const(value, Size::B_8)
}
}
/// Takes an arbitrary tokenstream as input, and ensures it can be interpolated safely.
/// returns a tokentree representing either a single token, or a delimited group.
///
/// If the given tokenstream contains multiple tokens, it will be parenthesized.
///
/// this will panic if given an empty tokenstream.
/// this would use delimiter::None if not for https://github.com/rust-lang/rust/issues/67062
pub fn delimited<T: ToTokens>(expr: T) -> TokenTree {
let stream = expr.into_token_stream();
// the stream api is very limited, but cloning a stream is luckily cheap.
// so to check how many tokens are contained we can do this.
let mut iter = stream.clone().into_iter();
let first = iter.next().unwrap();
if iter.next().is_none() {
return first;
}
let span = stream.span();
let mut group = Group::new(
proc_macro2::Delimiter::Parenthesis, stream
);
group.set_span(span);
TokenTree::Group(group)
}
/// Checks if the given `Group` is a parenthesized expression to work around rustc giving
/// Unnecessary parenthesis warnings in macro-generated code, if this tokentree were to be used
/// as the argument to a single argument function
///
/// i.e. `function(#arg)` expanding to `function((expr))`, which should instead be expanded to
/// `function(expr)`
///
/// To check if this is valid, we should a: test that this tokentree node is a parenthesis delimited
/// node and b: there are no commas in its internal tokentree, because then it'd be a tuple, and
/// this transform would be invalid
pub fn is_parenthesized(group: &Group) -> bool {
if group.delimiter() != Delimiter::Parenthesis {
return false
}
for item in group.stream() {
if let TokenTree::Punct(punct) = item {
if punct.as_char() == ',' {
return false
}
}
}
true
}
/// Returns the given `TokenTree`, but if it's a parenthesized group, it will change this
/// to a None-delimited group, if `is_parenthesized` deems this to be a valid transform
///
/// this is intended to work around unneeded parenthesis around function arguments warnings
pub fn strip_parenthesis(expr: &mut TokenTree) {
if let TokenTree::Group(group) = &*expr {
if is_parenthesized(group) {
let mut stripped = TokenTree::Group(Group::new(Delimiter::None, group.stream()));
stripped.set_span(group.span());
*expr = stripped;
}
}
}
/// Create a bitmask with `scale` bits set
pub fn bitmask(scale: u8) -> u32 {
1u32.checked_shl(u32::from(scale)).unwrap_or(0).wrapping_sub(1)
}
/// Create a bitmask with `scale` bits set
pub fn bitmask64(scale: u8) -> u64 {
1u64.checked_shl(u32::from(scale)).unwrap_or(0).wrapping_sub(1)
}