dynasmrt/
riscv.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//! Runtime support for the 32-bit and 64-bit RISC-V architecture assembling targets.
//!
//! The riscv instruction sets feature 16-bit and 32-bit width instructions. It features relocations
//! up to 20 bits in size in a single instruction, or 32 bits in size using sequences of two
//! instructions.
//!
//! The core relocation behaviour for these architecture is provided by the [`RiscvRelocation`] type.
//!
//! Next to that, this module contains the following:
//!
//! ## Type aliases
//!
//! Several specialized type aliases of the generic [`Assembler`] are provided as these are by far the most common usecase.
//!
//! ## Enums
//!
//! There are enumerations of every RISC-V register family. 
//! These enums implement the [`Register`] trait and their discriminant values match their numeric encoding in dynamic register literals.
//!
//! *Note: The presence of some registers listed here is purely what is encodable. Check the relevant architecture documentation to find what is architecturally valid.*
//!
//! ## Functions
//!
//! This module contains handlers for error conditions in the case where a dynamically selected register is invalid, or a dynamically encoded immediate is out of range.
//! These panic with a friendly error message if any of these conditions happen at runtime.

use crate::relocations::{Relocation, RelocationSize, RelocationKind, ImpossibleRelocation, fits_signed_bitfield};
use byteorder::{ByteOrder, LittleEndian};
use std::convert::TryFrom;
use crate::Register;

/// Relocation implementation for the RV32 and RV64 architectures.
#[derive(Debug, Clone)]
#[allow(missing_docs)]
pub enum RiscvRelocation {
    // beq, beqz, bge, bgeu, bgez, bgt, bgtu, bgtz, ble, bleu, blez, blt, bltu, bltz, bne, bnez
    // 12 bits, 2-bit scaled
    B,
    // j, jal
    // 20 bits, 2-bit scaled
    J,
    // c.beqz, c.bnez
    // 9 bits, 2-bit scaled
    BC,
    // c.j, c.jal
    // 12 bits, 2-bit scaled
    JC,
    // auipc
    // 32 bits, 12-bit scaled
    HI20,
    // loads, addi.
    // 12 bits, no scaling
    LO12,
    // stores
    // 12 bits, no scaling
    LO12S,
    // pc-relative addrgen/load pseudo instructions
    // 32 bits, no scaling
    SPLIT32,
    // pc-relative store pseudo instructions
    // 32 bits, no scaling
    SPLIT32S,
    // Anything in directives
    Plain(RelocationSize),
}

impl RiscvRelocation {
    fn bitsize(&self) -> (u8, u8) {
        match self {
            Self::B => (12, 1),
            Self::J => (20, 1),
            Self::BC => (9, 1),
            Self::JC => (12, 1),

            Self::HI20 => (32, 0),
            Self::LO12 => (32, 0),
            Self::LO12S => (32, 0),

            Self::SPLIT32 => (32, 0),
            Self::SPLIT32S => (32, 0),
            Self::Plain(s) => ((s.size() * 8) as u8, 0)
        }
    }
}

impl Relocation for RiscvRelocation {
    type Encoding = (u8,);
    fn from_encoding(encoding: Self::Encoding) -> Self {
        match encoding.0 {
            0 => Self::B,
            1 => Self::J,
            2 => Self::BC,
            3 => Self::JC,
            4 => Self::HI20,
            5 => Self::LO12,
            6 => Self::LO12S,
            7 => Self::SPLIT32,
            8 => Self::SPLIT32S,
            x  => Self::Plain(RelocationSize::from_encoding(x - 8))
        }
    }
    fn from_size(size: RelocationSize) -> Self {
        Self::Plain(size)
    }
    fn size(&self) -> usize {
        match self {
            Self::BC
            | Self::JC => 2,
            Self::B
            | Self::J
            | Self::HI20
            | Self::LO12
            | Self::LO12S => 4,
            Self::SPLIT32
            | Self::SPLIT32S => 8,
            Self::Plain(s) => s.size(),
        }
    }
    fn write_value(&self, buf: &mut [u8], value: isize) -> Result<(), ImpossibleRelocation> {
        // determine if the value fits
        let value = i64::try_from(value).map_err(|_| ImpossibleRelocation { } )?;

        let (bits, scaling) = self.bitsize();
        let mask = (1i64 << scaling) - 1;
        // special case: the 32-bit AUIPC-based offsets don't actually
        // range from -0x8000_0000 to 0x7FFF_FFFF on RV64 due to how
        // sign extension interacts between them, they range from
        // -0x8000_0800 to 0x7FFF_F7FF. But on RV32 they do span
        // from -0x8000_0000 to 0x7FFF_FFFF.
        // neither of these limits will ever occur in practical code,
        // so for sanity's sake we just clamp to between -0x8000_0000 and
        // 0x7FFF_F7FF
        match self {
            Self::HI20
            | Self::LO12
            | Self::LO12S
            | Self::SPLIT32
            | Self::SPLIT32S => {
                if value < -0x8000_0800 || value > 0x7FFF_F7FF {
                    return Err(ImpossibleRelocation { } );  
                }
            },
            _ => {
                if !fits_signed_bitfield(value, bits) || (value & mask) != 0 {
                    return Err(ImpossibleRelocation { } );
                }
            }
        }

        // we never encode any bit above the 31st so cast now
        let val_cast = value as u32;

        match self {
            Self::Plain(s) => s.write_value(buf, value as isize)?,
            Self::B => {
                let mut instr = LittleEndian::read_u32(buf);
                instr &= 0x01FF_F07F;

                instr |= ((val_cast >> 12) & 0x1) << 31;
                instr |= ((val_cast >> 5) & 0x3F) << 25;
                instr |= ((val_cast >> 1) & 0xF) << 8;
                instr |= ((val_cast >> 11) & 0x1) << 7;

                LittleEndian::write_u32(buf, instr);
            },
            Self::J => {
                let mut instr = LittleEndian::read_u32(buf);
                instr &= 0x0000_0FFF;

                instr |= ((val_cast >> 20) & 0x1) << 31;
                instr |= ((val_cast >> 1) & 0x3FF) << 21;
                instr |= ((val_cast >> 11) & 0x1) << 20;
                instr |= ((val_cast >> 12) & 0xFF) << 12;

                LittleEndian::write_u32(buf, instr);
            },
            Self::BC => {
                let mut instr = LittleEndian::read_u16(buf);
                instr &= 0xE383;

                instr |= (((val_cast >> 8) & 0x1) as u16) << 12;
                instr |= (((val_cast >> 3) & 0x3) as u16) << 10;
                instr |= (((val_cast >> 6) & 0x3) as u16) << 5;
                instr |= (((val_cast >> 1) & 0x3) as u16) << 3;
                instr |= (((val_cast >> 5) & 0x1) as u16) << 2;

                LittleEndian::write_u16(buf, instr);
            },
            Self::JC => {
                let mut instr = LittleEndian::read_u16(buf);
                instr &= 0xE003;

                instr |= (((val_cast >> 11) & 0x1) as u16) << 12;
                instr |= (((val_cast >> 4) & 0x1) as u16) << 11;
                instr |= (((val_cast >> 8) & 0x3) as u16) << 9;
                instr |= (((val_cast >> 10) & 0x1) as u16) << 8;
                instr |= (((val_cast >> 6) & 0x1) as u16) << 7;
                instr |= (((val_cast >> 7) & 0x1) as u16) << 6;
                instr |= (((val_cast >> 1) & 0x7) as u16) << 3;
                instr |= (((val_cast >> 5) & 0x1) as u16) << 2;

                LittleEndian::write_u16(buf, instr);
            },
            Self::HI20 => {
                let mut instr = LittleEndian::read_u32(buf);
                instr &= 0x0000_0FFF;

                let val_round: u32 = val_cast.wrapping_add(0x800);
                instr |= val_round & 0xFFFF_F000;

                LittleEndian::write_u32(buf, instr);
            },
            Self::LO12 => {
                let mut instr = LittleEndian::read_u32(buf);
                instr &= 0x000F_FFFF;

                instr |= (val_cast & 0xFFF) << 20;

                LittleEndian::write_u32(buf, instr);
            },
            Self::LO12S => {
                let mut instr = LittleEndian::read_u32(buf);
                instr &= 0x01FF_F07F;

                instr |= (val_cast & 0x1F) << 7;
                instr |= ((val_cast >> 5) & 0x7F) << 25;

                LittleEndian::write_u32(buf, instr);
            },
            Self::SPLIT32 => {
                let mut instr1 = LittleEndian::read_u32(&buf[..4]);
                let mut instr2 = LittleEndian::read_u32(&buf[4..]);
                instr1 &= 0x0000_0FFF;
                instr2 &= 0x000F_FFFF;

                let val_round: u32 = val_cast.wrapping_add(0x800);
                instr1 |= val_round & 0xFFFF_F000;
                instr2 |= (val_cast & 0xFFF) << 20;

                LittleEndian::write_u32(&mut buf[..4], instr1);
                LittleEndian::write_u32(&mut buf[4..], instr2);
            },
            Self::SPLIT32S => {
                let mut instr1 = LittleEndian::read_u32(&buf[..4]);
                let mut instr2 = LittleEndian::read_u32(&buf[4..]);
                instr1 &= 0x0000_0FFF;
                instr2 &= 0x01FF_F07F;

                let val_round: u32 = val_cast.wrapping_add(0x800);
                instr1 |= val_round & 0xFFFF_F000;
                instr2 |= (val_cast & 0x1F) << 7;
                instr2 |= ((val_cast >> 5) & 0x7F) << 25;

                LittleEndian::write_u32(&mut buf[..4], instr1);
                LittleEndian::write_u32(&mut buf[4..], instr2);
            },
        };

        Ok(())
    }
    fn read_value(&self, buf: &[u8]) -> isize {
        let bits;
        let mut unpacked;

        match self {
            Self::Plain(s) => {
                return s.read_value(buf)
            },
            Self::B => {
                bits = 12;
                let instr = LittleEndian::read_u32(buf);

                unpacked = ((instr >> 31) & 0x1) << 12;
                unpacked |= ((instr >> 25) & 0x3F) << 5;
                unpacked |= ((instr >> 8) & 0xF) << 1;
                unpacked |= ((instr >> 7) & 0x1) << 11;
            },
            Self::J => {
                bits = 20;
                let instr = LittleEndian::read_u32(buf);

                unpacked = ((instr >> 31) & 0x1) << 20;
                unpacked |= ((instr >> 21) & 0x3FF) << 1;
                unpacked |= ((instr >> 20) & 0x1) << 11;
                unpacked |= ((instr >> 12) & 0xFF) << 12;
            },
            Self::BC => {
                bits = 9;
                let instr = u32::from(LittleEndian::read_u16(buf));

                unpacked = ((instr >> 12) & 0x1) << 8;
                unpacked |= ((instr >> 10) & 0x3) << 3;
                unpacked |= ((instr >> 5) & 0x3) << 6;
                unpacked |= ((instr >> 3) & 0x3) << 1;
                unpacked |= ((instr >> 2) & 0x1) << 5;
            },
            Self::JC => {
                bits = 12;
                let instr = u32::from(LittleEndian::read_u16(buf));

                unpacked = ((instr >> 12) & 0x1) << 11;
                unpacked |= ((instr >> 11) & 0x1) << 4;
                unpacked |= ((instr >> 9) & 0x3) << 8;
                unpacked |= ((instr >> 8) & 0x1) << 10;
                unpacked |= ((instr >> 7) & 0x1) << 6;
                unpacked |= ((instr >> 6) & 0x1) << 7;
                unpacked |= ((instr >> 3) & 0x7) << 1;
                unpacked |= ((instr >> 2) & 0x1) << 5;
            },
            Self::HI20 => {
                bits = 32;
                let instr = LittleEndian::read_u32(buf);

                unpacked = ((instr >> 12) & 0xFFFFF) << 12;
                // There's a problem here. We don't know the lower
                // bits of the value that is being read, but they do matter
                // if this thing would get relocated. luckily, riscv only does
                // relative relocations so this should never happen, and we
                // should be fine with just returning the value without adjustment
            },
            Self::LO12 => {
                bits = 12;
                let instr = LittleEndian::read_u32(buf);

                unpacked = (instr >> 20) & 0xFFF;
            },
            Self::LO12S => {
                bits = 12;
                let instr = LittleEndian::read_u32(buf);

                unpacked = (instr >> 7) & 0x1F;
                unpacked |= ((instr >> 25) & 0x7F) << 5;
            },
            Self::SPLIT32 => {
                bits = 32;
                let instr1 = LittleEndian::read_u32(&buf[..4]);
                let instr2 = LittleEndian::read_u32(&buf[4..]);

                unpacked = ((instr1 >> 12) & 0xFFFFF) << 12;
                let mut lower: u32 = (instr2 >> 20) & 0xFFF;

                // sign extend the lower part and then add them
                lower = (lower ^ 0x800).wrapping_sub(0x800);
                unpacked = unpacked.wrapping_add(lower)

            },
            Self::SPLIT32S => {
                bits = 32;
                let instr1 = LittleEndian::read_u32(&buf[..4]);
                let instr2 = LittleEndian::read_u32(&buf[4..]);

                unpacked = ((instr1 >> 12) & 0xFFFFF) << 12;
                let mut lower: u32 = (instr2 >> 7) & 0x1F;
                lower |= ((instr2 >> 25) & 0x7F) << 5;

                // sign extend the lower part and then add them
                lower = (lower ^ 0x800).wrapping_sub(0x800);
                unpacked = unpacked.wrapping_add(lower)
            },
        }

        // sign extension
        let offset = 1u64 << (bits - 1);
        let value: u64 = (unpacked as u64 ^ offset).wrapping_sub(offset);

        value as i64 as isize
    }
    fn kind(&self) -> RelocationKind {
        RelocationKind::Relative
    }
    fn page_size() -> usize {
        4096
    }
}

/// A RISC-V Assembler. This is aliased here for backwards compatability.
pub type Assembler = crate::Assembler<RiscvRelocation>;
/// A RISC-V AssemblyModifier. This is aliased here for backwards compatability.
pub type AssemblyModifier<'a> = crate::Modifier<'a, RiscvRelocation>;
/// A RISC-V UncommittedModifier. This is aliased here for backwards compatability.
pub type UncommittedModifier<'a> = crate::UncommittedModifier<'a>;

// these should explicitly never be inlined, as this is the slow path.
// that's also why these aren't made generic.

/// Handler for `u32` out-of-range riscv64 & riscv32 immediates.
#[inline(never)]
pub fn immediate_out_of_range_unsigned_32(immediate: u32) -> ! {
    panic!("Cannot assemble this RISC-V instruction. Immediate {immediate} is out of range.")
}

/// Handler for `i32` out-of-range riscv64 & riscv32 immediates.
#[inline(never)]
pub fn immediate_out_of_range_signed_32(immediate: i32) -> ! {
    panic!("Cannot assemble this RISC-V instruction. Immediate {immediate} is out of range.")
}
/// Handler for `u64` out-of-range riscv64 & riscv32 immediates.
#[inline(never)]
pub fn immediate_out_of_range_unsigned_64(immediate: u64) -> ! {
    panic!("Cannot assemble this RISC-V instruction. Immediate {immediate} is out of range.")
}

/// Handler for `i64` out-of-range riscv64 & riscv32 immediates.
#[inline(never)]
pub fn immediate_out_of_range_signed_64(immediate: i64) -> ! {
    panic!("Cannot assemble this RISC-V instruction. Immediate {immediate} is out of range.")
}

/// Handler for invalid riscv64 & riscv32 registers.
#[inline(never)]
pub fn invalid_register(register: u8) -> ! {
    panic!("Cannot assemble this RISC-V instruction. Register x{register} cannot be encoded.")
}


/// 4 or 8-byte general purpopse registers, where X0 is the zero register
/// When using the RV32/64E profile, only the first 16 registers are valid
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum RX {
    X0 = 0x00, X1 = 0x01, X2 = 0x02, X3 = 0x03,
    X4 = 0x04, X5 = 0x05, X6 = 0x06, X7 = 0x07,
    X8 = 0x08, X9 = 0x09, X10= 0x0A, X11= 0x0B,
    X12= 0x0C, X13= 0x0D, X14= 0x0E, X15= 0x0F,
    X16= 0x10, X17= 0x11, X18= 0x12, X19= 0x13,
    X20= 0x14, X21= 0x15, X22= 0x16, X23= 0x17,
    X24= 0x18, X25= 0x19, X26= 0x1A, X27= 0x1B,
    X28= 0x1C, X29= 0x1D, X30= 0x1E, X31= 0x1F,
}
reg_impls!(RX);

/// 4, 8 or 16-byte floating point registers
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum RF {
    F0 = 0x00, F1 = 0x01, F2 = 0x02, F3 = 0x03,
    F4 = 0x04, F5 = 0x05, F6 = 0x06, F7 = 0x07,
    F8 = 0x08, F9 = 0x09, F10= 0x0A, F11= 0x0B,
    F12= 0x0C, F13= 0x0D, F14= 0x0E, F15= 0x0F,
    F16= 0x10, F17= 0x11, F18= 0x12, F19= 0x13,
    F20= 0x14, F21= 0x15, F22= 0x16, F23= 0x17,
    F24= 0x18, F25= 0x19, F26= 0x1A, F27= 0x1B,
    F28= 0x1C, F29= 0x1D, F30= 0x1E, F31= 0x1F,
}
reg_impls!(RF);


#[cfg(test)]
mod tests {
    use super::RX::*;
    use crate::Register;

    #[test]
    fn reg_code() {
        assert_eq!(X2.code(), 2);
    }

    #[test]
    fn reg_code_from() {
        assert_eq!(u8::from(X24), 0x18);
    }
}